Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 315, Issue 2, pp 425–434 | Cite as

The application of radiochronometry during the 4th collaborative materials exercise of the nuclear forensics international technical working group (ITWG)

  • Michael J. KristoEmail author
  • Ross Williams
  • Amy M. Gaffney
  • Theresa M. Kayzar-Boggs
  • Kerri C. Schorzman
  • Petra Lagerkvist
  • Anna Vesterlund
  • Henrik Ramebäck
  • Aubrey N. Nelwamondo
  • Deon Kotze
  • Kyuseok Song
  • Sang Ho Lim
  • Sun-Ho Han
  • Chi-Gyu Lee
  • Ayako Okubo
  • Didier Maloubier
  • Danièle Cardona
  • Pavel Samuleev
  • Ike Dimayuga
  • Zsolt Varga
  • Maria Wallenius
  • Klaus Mayer
  • Elaine Loi
  • Elizabeth Keegan
  • Jennifer Harrison
  • Sangeeth Thiruvoth
  • Floyd E. Stanley
  • Khal J. Spencer
  • Lav Tandon
Article

Abstract

In a recent international exercise, 10 international nuclear forensics laboratories successfully performed radiochronometry on three low enriched uranium oxide samples, providing 12 analytical results using three different parent-daughter pairs serving as independent chronometers. The vast majority of the results were consistent with one another and consistent with the known processing history of the materials. In general, for these particular samples, mass spectrometry gave more accurate and more precise analytical results than decay counting measurements. In addition, the concordance of the 235U–231Pa and 234U–230Th chronometers confirmed the validity of the age dating assumptions, increasing confidence in the resulting conclusions.

Keywords

Nuclear forensics Radiochronometry Uranium oxide Inductively coupled plasma mass spectrometry Thermal ionization mass spectrometry Gamma spectrometry Alpha spectrometry 

Notes

Acknowledgements

All participants acknowledge the Nuclear Forensics International Technical Working Group, in particular, the co-chairs of the Exercise Task Group, Jon Schwantes and Olivia Marsden, for organizing a successful international exercise. Some of this work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 with funding from the U.S. Federal Bureau of Investigation. This work was supported by the Nuclear Safety Research program through the Korea Foundation of Nuclear Safety (KOFONS), granted financial resource from the Nuclear Safety and Security Commission (NSSC), Republic of Korea (No. 1405020).

References

  1. 1.
    Allison G (2008) Nuclear deterrence in the Age of Nuclear Terrorism. Tech Rev 14(1):68–73Google Scholar
  2. 2.
    IAEA (2015) Nuclear forensics in support of investigations, iaea nuclear security series no. 2-G (Rev. 1). International Atomic Energy Agency, ViennaGoogle Scholar
  3. 3.
    LaMont SP, Hall G (2005) Uranium age determination by measuring the 230Th/234U ratio. J Radioanal Nucl Chem 264(2):423–427CrossRefGoogle Scholar
  4. 4.
    Eppich GR, Williams RW, Gaffney AM, Schorzman KC (2013) 235U–231Pa age dating of uranium materials for nuclear forensic investigations. J Anal Atom Spectrom 28:666–674CrossRefGoogle Scholar
  5. 5.
    Gaffney AM, Hubert A, Kinman WS, Magara M, Okubo A (2015) Round-robin 230Th–234U age dating of bulk uranium for nuclear forensics. J Radioanal Nucl Chem.  https://doi.org/10.1007/s10967-015-4334-8 Google Scholar
  6. 6.
    Williams RW, Gaffney AM (2011) 230Th–234U model ages of some uranium standard reference materials. Proc Radiochim Acta 1:31–35Google Scholar
  7. 7.
    Kayzar TM, Williams RW (2015) Developing Radium-226 and Actinium-227 age-dating techniques for nuclear forensics to gain insight from concordant and non-concordant radiochronometers. J Radioanal Nucl Chem 307(3):2061–2068CrossRefGoogle Scholar
  8. 8.
    Wallenius M, Morgenstern A, Apostolidis A, Mayer K (2002) Determination of the age of highly enriched uranium. Anal Bioanal Chem 374:379–384CrossRefGoogle Scholar
  9. 9.
    Varga Z, Mayer K, Bonamici CE, Hubert A, Hutcheon I, Kinman W, Kristo M, Pointurier F, Spencer K, Stanley F, Steiner R, Tandon L, Williams R (2015) Validation of reference materials for uranium radiochronometry in the frame of nuclear forensic investigations. Appl Rad Isotopes 102:81–86CrossRefGoogle Scholar
  10. 10.
    Niemeyer S, Koch L (2003) The nuclear smuggling International Technical Working Group: Making a difference in combating illicit trafficking. In: Proceedings from the conference on advances in destructive and non-destructive analysis for environmental monitoring and nuclear forensics, Karlsruhe, Germany, October 21–23. International Atomic Energy Agency, ViennaGoogle Scholar
  11. 11.
    Smith DK, Biro T, Chartier B, Mayer K, Niemeyer S, Thompson P (2007) Recent activities of the nuclear smuggling international technical working group to thwart illicit trafficking. In: Proceedings of the iaea conference on illicit nuclear trafficking, Edinburgh, Scotland, November 19–22, 2007. International Atomic Energy Agency, ViennaGoogle Scholar
  12. 12.
    Schwantes JM, Marsden O, Reilly D (2018) Fourth collaborative materials exercise of the nuclear forensics international technical working group. J Radioanal Nucl Chem 311:1441–1452CrossRefGoogle Scholar
  13. 13.
    Varga Z, Wallenius M, Mayer K, Hrnecek E (2011) Alternative method for the production date determination of impure uranium ore concentrate samples. J Radioanal Nucl Chem 290:485–492CrossRefGoogle Scholar
  14. 14.
    Deschamps P, Doucelance R, Ghaleb B, Michelot J-L (2003) Further investigation on optimized tail correction and high-precision measurement of uranium isotopic ratios using multi-collector ICP-MS. Chem Geol 201:141–160CrossRefGoogle Scholar
  15. 15.
    Morgenstern A, Apostolidis C, Mayer K (2002) Age determination of highly enriched uranium: separation and Analysis of 231Pa. Anal Chem 74:5513–5516CrossRefGoogle Scholar
  16. 16.
    Mayer K, Wallenius M, Varga Z (2013) Nuclear forensic science: correlating measurable material parameters to the history of nuclear material. Chem Rev 113:884–900CrossRefGoogle Scholar
  17. 17.
    Nguyen CT (2005) Age-dating of highly enriched uranium by gamma-spectrometry. Nucl Instrum Method B 229:103–110CrossRefGoogle Scholar
  18. 18.
    Nguyen CT, Zsigrai J (2006) Gamma-spectrometric uranium age-dating using intrinsic efficiency calibration. Nucl Instrum Method B 243:187–192CrossRefGoogle Scholar
  19. 19.
    Nguyen CT, Zsigrai J (2006) Basic characterization of highly enriched uranium by gamma spectrometry. Nucl Instrum Method B 246:417–424CrossRefGoogle Scholar
  20. 20.
    Nguyen CT, Zsigrai J, Lakosi L (2014) Uranium age dating by gamma spectrometry. In: Advances in nuclear forensics: countering the evolving threat of nuclear and other radioactive material. summary of an international conference, IAEA, Vienna, Austria, 7–10 July 2014, Proc. Series 2015, CD-ROM, IAEA-CN-218/013Google Scholar
  21. 21.
    Hanlen R. (2011) Round robin 3 exercise after action and lessons learned report, PNNL-20079. Pacific Northwest National Laboratory, Richland, Washington. http://www.nf-itwg.org/sites/default/files/pdfs/Round_Robin_3_Final_Report.pdf
  22. 22.
    Kristo MJ, Tumey SJ (2013) The state of nuclear forensics. Nucl Instrum Method B 294:656–661CrossRefGoogle Scholar

Copyright information

© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2018

Authors and Affiliations

  • Michael J. Kristo
    • 1
    Email author
  • Ross Williams
    • 1
  • Amy M. Gaffney
    • 1
  • Theresa M. Kayzar-Boggs
    • 1
  • Kerri C. Schorzman
    • 1
  • Petra Lagerkvist
    • 2
  • Anna Vesterlund
    • 2
    • 3
  • Henrik Ramebäck
    • 2
    • 3
  • Aubrey N. Nelwamondo
    • 4
  • Deon Kotze
    • 4
  • Kyuseok Song
    • 5
  • Sang Ho Lim
    • 5
  • Sun-Ho Han
    • 5
  • Chi-Gyu Lee
    • 5
  • Ayako Okubo
    • 6
  • Didier Maloubier
    • 7
  • Danièle Cardona
    • 7
  • Pavel Samuleev
    • 8
  • Ike Dimayuga
    • 9
  • Zsolt Varga
    • 10
  • Maria Wallenius
    • 10
  • Klaus Mayer
    • 10
  • Elaine Loi
    • 11
  • Elizabeth Keegan
    • 11
  • Jennifer Harrison
    • 11
  • Sangeeth Thiruvoth
    • 11
  • Floyd E. Stanley
    • 12
  • Khal J. Spencer
    • 12
  • Lav Tandon
    • 12
  1. 1.Lawrence Livermore National LaboratoryLivermoreUSA
  2. 2.Swedish Defence Research Agency, FOI, CBRN Defence and SecurityUmeåSweden
  3. 3.Department of Chemistry and Chemical EngineeringChalmers University of TechnologyGöteborgSweden
  4. 4.Nuclear Forensics LaboratorySouth Africa Nuclear Energy Corporation (Necsa)PretoriaSouth Africa
  5. 5.Nuclear Chemistry Research DivisionKorea Atomic Energy Research InstituteDaejeonKorea
  6. 6.Japan Atomic Energy Agency, Integrated support center for Nuclear Nonproliferation and Nuclear SecurityTokaiJapan
  7. 7.Commissariat à l’Energie Atomique et aux Energies Alternatives, Centre de ValducIs-Sur-TilleFrance
  8. 8.Royal Military College of CanadaKingstonCanada
  9. 9.Canadian Nuclear LaboratoriesChalk RiverCanada
  10. 10.European Commission, Joint Research Centre, Directorate for Nuclear Safety and SecurityKarlsruheGermany
  11. 11.Australian Nuclear Science and Technology OrganisationSydneyAustralia
  12. 12.Los Alamos National LaboratoryLos AlamosUSA

Personalised recommendations