Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 315, Issue 1, pp 103–110 | Cite as

Rapid method for accurate determination of actinides (U, Th, Pu and Am) in water samples for emergency response

  • Zhongtang Wang
  • Jinxian Lin
  • Sixuan Li
  • Qiuju Guo
  • Wenna Huang
  • Wei Wen
  • Guiping Dan
  • Zhaoyi Tan
Article

Abstract

To rapidly assess the contamination of actinides in emergency water, a method was developed to simultaneously analyze U, Th, Pu and Am. The method consists of two steps: extraction chromatographic separation using UTEVA and DGA resins and isotopic determination of actinides by inductively coupled plasma mass spectrometry (ICPMS). The whole analytical procedure takes only 8 h and high chemical recoveries of actinides were obtained. The cross spectral interferences between actinides in ICPMS measurement were sufficiently removed. The accuracy was validated by analyzing IAEA-443 seawater sample. The low limits of detection of actinides allow this method to distinguish low level contamination.

Keywords

ICPMS Actinides Nuclear emergency response Simultaneous determination Water sample 

Notes

Acknowledgements

This work was partially supported by the Science Challenge Project, China (JCKY2016212A504) and the National Natural Science Foundation of China (Grant No. 21607139).

References

  1. 1.
    Habibi A, Vivien C, Boulet B, Cossonnet C, Gurriaran R, Gleizes M, Cote G, Larivière D (2016) A rapid sequential separation of actinides and radiostrontium coupled to ICP-MS and gas proportional counting. J Radioanal Nucl Chem 310:217–227CrossRefGoogle Scholar
  2. 2.
    Thakur P, Ballard S, Conca JL (2011) Sequential isotopic determination of plutonium, thorium, americium and uranium in the air filter and drinking water samples around the WIPP site. J Radioanal Nucl Chem 287:311–321CrossRefGoogle Scholar
  3. 3.
    Harrison JJ, Zawadzki A, Chisari R, Wong HK (2011) Separation and measurement of thorium, plutonium, americium, uranium and strontium in environmental matrices. J Environ Radioact 102:896–900CrossRefGoogle Scholar
  4. 4.
    Maxwell SL, Culligan BK, Hutchison JB, Utsey RC, McAlister DR (2014) Rapid determination of actinides in seawater samples. J Radioanal Nucl Chem 300:1175–1189CrossRefGoogle Scholar
  5. 5.
    Habibi A, Boulet B, Gleizes M, Larivière D, Cote G (2015) Rapid determination of actinides and 90Sr in river water. Anal Chim Acta 883:109–116CrossRefGoogle Scholar
  6. 6.
    Shi Y, Collins R, Broome C (2013) Determination of uranium, thorium and plutonium isotopes by ICP-MS. J Radioanal Nucl Chem 296:509–515CrossRefGoogle Scholar
  7. 7.
    Qiao JX, Hou XL, Steier P, Golser R (2013) Sequential injection method for rapid and simultaneous determination of 236U, 237Np, and Pu isotopes in seawater. Anal Chem 85:11026–11033CrossRefGoogle Scholar
  8. 8.
    Dai XX, Kramer-Tremblay S (2014) Five-column chromatography separation for simultaneous determination of hard-to-detect radionuclides in water and swipe samples. Anal Chem 86:5441–7447CrossRefGoogle Scholar
  9. 9.
    Zoriy P, Flucht R, Burow M, Ostapczuk P, Lennartz R, Zoriy M (2010) Development of a relatively cheap and simple automated separation system for a routine separation procedure based on extraction chromatography. J Radioanal Nucl Chem 286:211–216CrossRefGoogle Scholar
  10. 10.
    Maxwell SL, Jones VD (2009) Rapid determination of actinides in urine by inductively coupled plasma mass spectrometry and alpha spectrometry: a hybrid approach. Talanta 80:143–150CrossRefGoogle Scholar
  11. 11.
    Kazi ZH, Cornett RJ, Zhao XL, Kieser L (2014) Americium and plutonium separation by extraction chromatography for determination by accelerator mass spectrometry. Anal Chim Acta 829:75–80CrossRefGoogle Scholar
  12. 12.
    Guérin N, Nadeau K, Potvin S, Hardy JM, Larivière D (2013) Automated pressurized injection system for the separation of actinides by extraction chromatography. J Radioanal Nucl Chem 295:1803–1811CrossRefGoogle Scholar
  13. 13.
    Pham MK, Betti M, Povinec PP, Benmansour M, Bünger V, Drefvelin J, Engeler C, Flemal JM, Gascó C, Guillevic J, Gurriaran R, Groening M, Happel JD, Herrmann J, Klemola S, Kloster M, Kanisch G, Leonard K, Long S, Nielsen S, Oh JS, Rieth PU, Östergren I, Pettersson H, Pinhao N, Pujol L, Sato K, Schikowski J, Varga Z, Vartti VP, Zheng J (2011) A certified reference material for radionuclides in the water sample from Irish Sea (IAEA-443). J Radioanal Nucl Chem 288:603–611CrossRefGoogle Scholar
  14. 14.
    Gray J, Jones SR, Smith AD (1995) Discharges to the environment from the Sellafield site, 1951–1992. J Radiol Prot 15:99–131CrossRefGoogle Scholar
  15. 15.
    Pham MK, Sanchez-Cabezav JA (2009). Interlaboratory comparison-radionuclides in Irish sea water IAEA-443, IAEA/AQ/10, MonacoGoogle Scholar
  16. 16.
    Horwitz EP, Dietz ML, Chiarizia R, Diamond H, Essling AM, Graczyk D (1992) Separation and preconcentration of uranium from acidic media by extraction chromatography. Anal Chim Acta 266:25–37CrossRefGoogle Scholar
  17. 17.
    Wang ZT, Zheng J, Cao LG, Tagami K, Uchida S (2016) Method for ultratrace level 241Am determination in large soil samples by sector field-inductively coupled plasma mass spectrometry: with emphasis on the removal of spectral interferences and matrix effect. Anal Chem 88:7387–7394CrossRefGoogle Scholar
  18. 18.
    Wang ZT, Zheng J, Ni YY, Men W, Tagami K, Uchida S (2017) High-performance method for determination of Pu isotopes in soil and sediment samples by sector field-inductively coupled plasma mass spectrometry. Anal Chem 89:2221–2226CrossRefGoogle Scholar
  19. 19.
    Egorov OB, Grate JW, O’Hara MJ, Farmer OTI (2001) Extraction chromatographic separations and analysis of actinides using sequential injection techniques with on-line inductively coupled plasma mass spectrometry (ICPMS) detection. Analyst 126:1594–1601CrossRefGoogle Scholar
  20. 20.
    Guérin N, Nadeau K, Larivière D (2011) Neptunium(III) application in extraction chromatography. Talanta 87:8–14CrossRefGoogle Scholar
  21. 21.
    Kim J, Tsouris C, Mayes RT, Oyola Y, Saito T, Janke CJ, Dai S, Schneider E, Sachde D (2013) Recovery of uranium from seawater: a review of current status and future research needs. Sep Sci Technol 48:367–387CrossRefGoogle Scholar
  22. 22.
    Philippou K, Pashalidis I (2017) Uranium analysis in drinking waters in Cyprus. J Radioanal Nucl Chem 321:361–365CrossRefGoogle Scholar
  23. 23.
    Zheng J, Tagami K, Watanabe Y, Uchida S, Aono T, Ishii N, Yoshida S, Kubota Y, Fuma S, Ihara S (2012) Isotopic evidence of plutonium release into the environment from the Fukushima DNPP accident. Sci Rep.  https://doi.org/10.1038/srep00304 Google Scholar
  24. 24.
    Charlesworth ME, Service M, Gibson CE (2006) The distribution and transport of Sellafield derived 137Cs and 241Am to western Irish Sea sediments. Sci Total Environ 354:83–92CrossRefGoogle Scholar
  25. 25.
    Wang ZT, Yang GS, Zheng J, Cao LG, Yu HJ, Zhu YB, Tagami K, Uchida S (2015) Effect of ashing temperature on accurate determination of plutonium in soil samples. Anal Chem 87:5511–5515CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  1. 1.Institute of Nuclear Physics and ChemistryChina Academy of Engineering PhysicsMianyangChina
  2. 2.State Key Laboratory of Nuclear Physics and TechnologyPeking UniversityBeijingChina
  3. 3.Radiation Monitoring Technical Center of Ministry of Environmental ProtectionHangzhouChina

Personalised recommendations