Thirty years of k 0-NAA at JSI, Ljubljana: implementation, progress, achievements

  • Borut Smodiš


A survey is given of the installation, applications and main achievements of the k 0 method of neutron activation analysis as implemented at the Jožef Stefan Institute, Ljubljana/Slovenia, during 30 years of its continuous use. Main scientific achievements include international dissemination of its application, by contributions to processes of certifying new reference materials and improvements in better assessment of its measurement uncertainty.


K0 method of neutron activation analysis Jožef Stefan Institute Reference material Measurement uncertainty 



The author acknowledges the financial support from the Slovenian Research Agency (research core funding No. P2-0075). Thanks are due to Radojko Jaćimović and Tinkara Bučar for their scientific contributions to the development of k 0-NAA.


  1. 1.
    De Corte F (1987) The k 0-standardization method. A move to the optimization of neutron activation analysis. Ghent UniversityGoogle Scholar
  2. 2.
    Smodiš B, Jaćimović R, Jovanović S, Stegnar P, Vukotić P (1988) Efficiency characterization of HPGe detectors for use in the k 0-method of neutron activation analysis. Vestn Slov Kem Drus 35:397–408Google Scholar
  3. 3.
    Jovanović S, Smodiš B, Jaćimović R, Vukotić P, Stegnar P (1988) True coincidence corrections and related peak-to-total ratio measurements of HPGe detectors for use in the k 0-method of NAA. Vestn Slov Kem Drus 35:409–424Google Scholar
  4. 4.
    Jovanović S, Vukotić P, Smodiš B, Jaćimović R, Mihaljević N, Stegnar P (1989) Epithermal neutron flux characterization of the TRIGA Mark II reactor, Ljubljana, Yugoslavia for use in NAA. J Radioanal Nucl Chem Artic 129:343–349CrossRefGoogle Scholar
  5. 5.
    Jovanović S, Smodiš B, Jaćimović R, Vukotić P, Stegnar P (1989) Neutron flux variability at the TRIGA Mark II reactor, Ljubljana, as a parameter with applying the k 0-method of NAA. J Radioanal Nucl Chem Lett 135:59–65CrossRefGoogle Scholar
  6. 6.
    Jaćimović R, Stibilj V, Benedik L, Smodiš B (2003) Characterization of the neutron flux gradients in typical irradiation channels of a TRIGA Mark II reactor. J Radioanal Nucl Chem 257:545–549CrossRefGoogle Scholar
  7. 7.
    De Corte F, De Wispelaere A, van Sluijs R, Bossus D, Simonits A, Kučera J, Frána J, Smodiš B, Jaćimović R (1997) The installation of KAYZERO-assisted NAA for use in industry and environmental sanitation in three Central European countries: plans and achievements of a COPERNICUS project. J Radioannal Nucl Chem 215:31–37CrossRefGoogle Scholar
  8. 8.
    De Corte F, van Sluijs R, Simonits A, Kučera J, Smodiš B, Byrne AR, De Wispelaere A, Bossus D, Frána J, Horák Z, Jaćimović R (2001) Installation and calibration of Kayzero-assisted NAA in three Central European countries via a Copernicus project. Appl Radiat Isot 55:347–354CrossRefGoogle Scholar
  9. 9.
    De Corte F, van Sluijs R, Simonits A, Kučera J, Smodiš B, Byrne AR, De Wispelaere A, Bossus D, Frána J, Horák Z, Jaćimović R (2001) The validation of Kayzero-assisted NAA in Budapest, Řež, and Ljubljana via the analysis of three BCR certified reference materials. Fresenius J Anal Chem 370:38–41CrossRefGoogle Scholar
  10. 10.
    Vermaercke P, Robouch P, Eguskiza M, De Corte F, Kennedy G, Smodiš B, Jaćimović R, Yonezawa C, Matsue H, Lin X, Blaauw M, Kučera J (2006) Characterisation of synthetic multi-element standards (SMELS) used for the validation of k 0-NAA. Nucl Instr Meth Phys Res Sect A 564:675–682CrossRefGoogle Scholar
  11. 11.
    Jaćimović R, Jovanović S, Smodiš B, Vukotić P, Stegnar P (1989) Determination of the k 0 and Q 0 factors for 108Pd and 158Gd nuclides. Vestn Slov Kem Drus 36:359–430Google Scholar
  12. 12.
    De Corte F, Simonits A, Bellemans F, Freitas MC, Jovanović S, Smodiš B, Erdtmann G, Petri H, De Wispelaere A (1993) Recent advances in the k 0-standardization of neutron activation analysis: extensions, applications, prospects. J Radioanal Nucl Chem Artic 169:125–158CrossRefGoogle Scholar
  13. 13.
    Smodiš B, De Corte F, De Wispelaere A (1994) Nuclear data and measurements for the 130Ba (n, γ) 131Ba reaction. J Radioanal Nucl Chem Lett 186:183–188CrossRefGoogle Scholar
  14. 14.
    Jaćimović R, De Corte F, Kennedy G, Vermaercke P, Revay Z (2014) The 2012 recommended k 0 database. J Radioanal Nucl Chem 300:589–592CrossRefGoogle Scholar
  15. 15.
    Smodiš B, Trkov A, Jaćimović R (2003) Effects of the neutron spectrum on the neutron activation analysis constants for 94Zr and 96Zr. J Radioanal Nucl Chem 257:481–487CrossRefGoogle Scholar
  16. 16.
    Smodiš B, Jaćimović R, Jovanović S, Stegnar P (1990) Determination of trace elements in standard reference materials by the k 0-standardization method. Biol Trace Elem Res 26:43–51CrossRefGoogle Scholar
  17. 17.
    Smodiš B, Jaćimović R, Medin G, Jovanović S (1993) Instrumental neutron activation analysis of sediment reference materials using the k 0-standardization method. J Radioanal Nucl Chem Artic 169:177–185CrossRefGoogle Scholar
  18. 18.
    Smodiš B, Jaćimović R, Stegnar PSTEGNAR, Jovanović S (1992) Multielement analysis of NIST proposed SRM 1547 Peach Leaves. J Radioanal Nucl Chem Artic 160:101–108CrossRefGoogle Scholar
  19. 19.
    Smodiš B, Stropnik B (1994) Use of nuclear and nuclear-related analytical techniques in studies of trace and minor elements in air pollution. Analyst 119:2061–2065CrossRefGoogle Scholar
  20. 20.
    Jaćimović R, Smodiš B, Bučar T, Stegnar P (2003) k 0-NAA quality assessment by analysis of different certified reference materials using the KAYZERO/SOLCOI software. J Radioanal Nucl Chem 257:659–663CrossRefGoogle Scholar
  21. 21.
    Bučar T, Smodiš B, Jaćimović R, Jeran Z (2008) Quality assessment of k 0-NAA by statistical evaluation of CRM results. Acta Chim Slov 55:166–171Google Scholar
  22. 22.
    Smodiš B (1996) Some aspects of quality assessmenot of the k 0-based method of NAA. Mikrochim Acta 123:303–309CrossRefGoogle Scholar
  23. 23.
    Smodiš B, Bučar T (2006) Overall measurement uncertainty of k 0-based neutron activation analysis. J Radioanal Nucl Chem 269:311–316CrossRefGoogle Scholar
  24. 24.
    Bučar T, Smodiš B (2006) Assessment of the intrinsic uncertainty of the k 0-based NAA. Nucl Instr Meth Phys Res Sect A 564:683–687CrossRefGoogle Scholar
  25. 25.
    Bučar T, Smodiš B (2008) Computer-assisted uncertainty assessment of k 0-NAA measurement results. Nucl Instr Meth Phys Res Sect A 595:647–652CrossRefGoogle Scholar
  26. 26.
    Smodiš B, Bučar T (2010) Comparison of k 0–NAA measurement results with calculated uncertainties for reference samples. Nucl Instr Meth Phys Res Sect A 622:407–410CrossRefGoogle Scholar
  27. 27.
    Smodiš B, Bučar T, Jaćimović R (2014) Comparison of different approaches to estimate uncertainty budget in k 0-INAA measurement. J Radioanal Nucl Chem 300:573–579CrossRefGoogle Scholar
  28. 28.
    LP-090-Institut Jožef Stefan, Accreditations, Slovenska Akreditacija, Accessed 17 Oct 2017
  29. 29.
    Wang J et al (2015) Final report of the key comparison CCQM-K106: Pb, As and Hg measurements in cosmetic (cream). Metrologia Tech Suppl 52:08004CrossRefGoogle Scholar
  30. 30.
    Hioki A et al (2015) Report of the key comparison CCQM-K108 determination of arsenic species, total arsenic and cadmium in brown rice flour. Metrologia Tech Suppl 52:08005CrossRefGoogle Scholar
  31. 31.
    Arvizu Torres MR et al (2017) Contaminant and other elements in soil (CCQM-K127). Metrologia Tech Suppl 54:08010CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  1. 1.Reactor Infrastructure Centre and Department of Environmental SciencesJožef Stefan InstituteLjubljanaSlovenia

Personalised recommendations