Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 314, Issue 3, pp 2229–2236 | Cite as

Synergistic thallium and iodine memory-based cryogel traps for removing thallium and iodine ions

  • Ebru Birlik ÖzkütükEmail author
  • Yasin Emekli
  • Deniz Uğurağ
  • Deniz Hür
  • Arzu Ersöz
  • Rıdvan Say
Article
  • 161 Downloads

Abstract

Both recovery and effective removing of radioactive thallium and iodine are important subject to protect human health and the environment. In this study, we have studied synergistic and cost-effective cryogel based sorbents by combining the high selectivity adsorption ability of MIP and the high porosity of cryogels. For thallium-imprinted cryogel; N-methacryloyl-(l)-cysteine (MAC) has synthesized, MAC has complexed with thallium ion and polymer cryogel has been prepared. For iodine-imprinted cryogel; MAC-thallium has complexed with iodine; and polymer cryogel has been prepared. Then, the adsorption, desorption, selectivity and reusability experiments have been carried out.

Keywords

Cryogel Iodine Thallium MIP Radionuclide Removal 

Notes

Acknowledgement

This work was supported by ESOGU (Project Number is 2014-492).

References

  1. 1.
    Mulkey JP, Oehme FW (1993) A review of thallium toxicity. Vet Hum Toxicol 35(5):445–453Google Scholar
  2. 2.
    Eroğlu H, Aksakal O (2016) Effectivity analysis of the decontamination products for radioactive materials used in nuclear medicine Iğdır Univ. J Res Inst Sci Technol 6(2):59–69CrossRefGoogle Scholar
  3. 3.
    Saha A (2005) Thallium toxicity: a growing concer. Indian J Occup Environ Med 9(2):53–56CrossRefGoogle Scholar
  4. 4.
    Dündar MŞ, Altundağ H (2007) Effect of thallium on health, environmental concern and thallium speciation, 80–86Google Scholar
  5. 5.
    Mercurio M, Hoffman RS (2011) Thallium Goldfrank’s toxicologic emergencies. 9th edn, pp 1326–1333Google Scholar
  6. 6.
    Wiesenfeld D, Webster G, Cameron F, Ferguson MM, MacFadyen EE, MacFarlane TW (1983) Salivary gland dysfunction following radioactive iodine therapy. Oral Surg Oral Med. Oral Pathol 55(2):138–141CrossRefGoogle Scholar
  7. 7.
    United States Environmental Protection Agency. (2010). RadTown USA. http://www.epa.gov/radtown/
  8. 8.
    Baker David H (2004) Iodine toxicology and its amelioration. Exp Biol Med 229:473–478CrossRefGoogle Scholar
  9. 9.
    Yapıcı S, Eroglu H, Varoglu E (2011) Bio-sorption of Tl-201 radionuclide on olive pomace. Appl Radiat Isot 69:614–622CrossRefGoogle Scholar
  10. 10.
    Birlik E, Büyüktiryaki S, Ersöz A, Denizli A, Say R (2006) Selective separation of thorium using ion imprinted chitosan-phthalate particles via solid phase extraction. Sep Sci Technol 41:3109–3121CrossRefGoogle Scholar
  11. 11.
    Sevilimedu A, Bhaskarapillai NV, Sellergren B (2009) Synthesis and characterization of imprinted polymers for radioactive waste reduction. Ind Eng Chem Res 48(8):3730–3737CrossRefGoogle Scholar
  12. 12.
    Sakr MS, Sayed M, Hafez M (2003) Immobilization of radioactive waste in mixture of cement, clay and polymer. J Radioanal Nucl Chem 256(2):179–184CrossRefGoogle Scholar
  13. 13.
    Nero and Bartzack (2014) Nuclear waste reduction using molecularly imprinted polymers. J Polym Biopolym Phys Chem 2(2):29–36Google Scholar
  14. 14.
    Ji XZ, Liu HJ, Wang LL, Sun YK, Wu YW (2013) Study on adsorption of Th(IV) using surface modified dibenzoylmethane molecular imprinted polymer. J Radioanal Nucl Chem 295(1):265–270CrossRefGoogle Scholar
  15. 15.
    Tavengwa Tawanda N, Cukrowska E, Chimuka L (2015) Sequestration of U(VI) from aqueous solutions using precipitate ion imprinted polymers endowed with oleic acid functionalized magnetite. J Radioanal Nucl Chem 304(2):933–943CrossRefGoogle Scholar
  16. 16.
    Dasthaiah K, Robert Selvan B, Suneesh AS, Venkatesan KA, Antony MP, Gardas RL (2017) Ionic liquid modified silica gel for the sorption of americium(III) and europium(III) from dilute nitric acid medium. J Radioanal Nucl Chem 313(3):515–521CrossRefGoogle Scholar
  17. 17.
    da Silva H, Pacheco JG, Magalhães JMCS, Viswanathan S, Delerue-Matos C (2014) MIP-graphene-modified glassy carbon electrode for the determination of trimethoprim. Biosens Bioelectron 52:56–61CrossRefGoogle Scholar
  18. 18.
    Say R, Birlik E, Ersöz A, Yılmaz F, Gedikbey T, Denizli A (2003) Preconcentration of copper on ion-selective imprinted polymer microbeads. Anal Chim Acta 480:251–258CrossRefGoogle Scholar
  19. 19.
    Büyüktiryaki S, Say R, Ersöz A, Birlik E, Denizli A (2005) Selective preconcentration of thorium in the presence of UO22+, Ce3+ and La3+ using Th(IV) imprinted polymer. Talanta 67:640–645CrossRefGoogle Scholar
  20. 20.
    Birlik E, Ersöz A, Denizli A, Say R (2008) Preconcentration of phosphate ion onto ion- imprinted polymer. J Hazard Mater 157:130–136CrossRefGoogle Scholar
  21. 21.
    Birlik Özkütük E, Emir Diltemiz S, Özalp E, Uzun L, Ersöz A (2015) Ligand exchange and MIP-based paraoxon memories onto QCM sensor. Appl Phys A 119(1):351–357CrossRefGoogle Scholar
  22. 22.
    Alvarez-Lorenzo C, Concheiro A (2004) Molecularly imprinted polymers for drug delivery. J Chromatogr B 804:231–245CrossRefGoogle Scholar
  23. 23.
    Lozinsky VI, Galaev IY, Plieva FM, Savina IN, Jungvid H, Mattiasson B (2003) Polymeric cryogels as promising materials of biotechnological interest. Trends Biotechnol 21:445–451CrossRefGoogle Scholar
  24. 24.
    Lozinsky VI, Plieva FM, Galaev IY, Mattiasson B (2002) The potential of polymeric cryogels in bioseparation. Bioseparation 10:163–188CrossRefGoogle Scholar
  25. 25.
    Babac C, Yavuz H, Galaev IY, Piskin E, Denizli A (2006) Binding of antibodies to concanavalin A-modified monolithic cryogel. React Funct Polym 66:1263–1271CrossRefGoogle Scholar
  26. 26.
    Baydemir G, Bereli N, Andac M, Say R, Yu I, Galaev Denizli A (2009) Bilirubin recognition via molecularly imprinted supermacroporous cryogels. Colloids Surf B 68:33–38CrossRefGoogle Scholar
  27. 27.
    Andac M, Plieva FM, Denizli A, Galaev IY, Mattiasson B (2008) Poly(hydroxyethylmethacrylate)-based macroporous hydrogels with disulfide cross-linker. Macromol Chem Phys 209:577–584CrossRefGoogle Scholar
  28. 28.
    Arvidsson P, Plieva FM, Lozinsky VI, Galaev IY, Mattiasson B (2003) Direct chromatographic capture of enzyme from crude homogenate using immobilized metal affinity chromatography on a continuous supermacroporous adsorbent. J Chromatogr A 986:275–290CrossRefGoogle Scholar
  29. 29.
    Arvidsson P, Plieva FM, Savina IN, Lozinsky VI, Fexby S, Bülow L, Galaev IY, Mattiasson B (2002) Chromatography of microbial cells using continuous supermacroporous affinity and ion-exchange columns. J Chromatogr A 977:27–38CrossRefGoogle Scholar
  30. 30.
    Bicen Ünlüer Ö, Ersöz A, Denizli A, Demirel R, Say R (2013) Separation and purification of hyaluronic acid by embeddedglucuronic acid imprinted polymers into cryogel. J Chromatogr B 934:46–52CrossRefGoogle Scholar
  31. 31.
    Yao K, Yun J, Shen S, Wang L, He X, Yu X (2006) Characterization of a novel continuous supermacroporous monolithic cryogel embedded with nanoparticles for protein chromatography. J Chromatogr A 1109:103–110CrossRefGoogle Scholar
  32. 32.
    Cankara S, Birlik Özkütük E, Öztürk Ö, Ersöz A, Say R (2016) Biopolymer based ion imprinting cryogel traps for the removal of Tl(I). Sep Sci Technol 51:901–908CrossRefGoogle Scholar
  33. 33.
    Aslıyüce S, Bereli N, Uzun L, Onur MA, Say R, Denizli A (2010) Denizli ion-imprinted supermacroporous cryogel, for in vitro removal of iron out of human plasma with beta thalassemia. Sep Purif Technol 73:243–249CrossRefGoogle Scholar
  34. 34.
    Dainiak MB, Kumar A, Yu Galaev I, Mattiasson B (2006) Detachment of affinity-captured bioparticles by elastic deformation of a macroporous hydrogel. Proc Nat Acad Sci USA 103:849–854CrossRefGoogle Scholar
  35. 35.
    Hosseini MS, Naseri Y (2003) Determination of thallium(I) by flotation-spectrophotometric method using iodide and Rhodamine B. Anal Sci 19:1505–1508CrossRefGoogle Scholar
  36. 36.
    Hür D, Ekti SF, Say R (2007) N-Acylbenzotriazole mediated synthesis of some methacrylamido amino acids. Lett Org Chem 4(8):585–587CrossRefGoogle Scholar
  37. 37.
    Eaton AD, Clesceri LS, Greenberg AE (1995) Standard methods for the examination of water and wastewater, 19th edn. American Public Health Association, Washington, DCGoogle Scholar
  38. 38.
    Cheung CW, Porter JF, Mckay G (2001) Sorption kinetic analysis for the removal of cadmium ions from effluents using bone char. Water Res 35:605–612CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  • Ebru Birlik Özkütük
    • 1
    Email author
  • Yasin Emekli
    • 1
  • Deniz Uğurağ
    • 1
  • Deniz Hür
    • 2
  • Arzu Ersöz
    • 2
  • Rıdvan Say
    • 2
  1. 1.Department of ChemistryEskişehir Osmangazi UniversityEskisehirTurkey
  2. 2.Department of ChemistryAnadolu UniversityEskisehirTurkey

Personalised recommendations