Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 314, Issue 3, pp 1695–1700 | Cite as

Investigation of the molybdenum oxide purification for the AMoRE experiment

  • Olga Gileva
  • Pabitra Aryal
  • Sujita Karki
  • HongJoo Kim
  • Yeongduk Kim
  • Vitaly Milyutin
  • HyangKyu ParkEmail author
  • KeonAh Shin
Article

Abstract

The presented study reports on the purification of molybdenum oxide, which is one of the important tasks of the Advanced Mo based Rare process Experiment in searching for the neutrinoless double beta (0νββ) decay of 100Mo. Purified MoO3 powder is used as initial material for further growth of radiopure monocrystals. As purification technique, double sublimation, co-precipitation with calcium chloride carrier, and precipitation of polyammonium molybdate from acidic media were used. Concentrations of impurities like Sr, Ba, Pb, Th and U were measured by ICP-MS and radioactive isotopes were checked by a HPGe detector at the YangYang underground Laboratory in Korea.

Keywords

Neutrinoless double beta (0νββ) decay Molybdenum Sublimation Wet chemistry purification 

Notes

Acknowledgements

We thank J.S. Choi and D. S. Leonard for ICP-MS measurements, and W.G. Kang and G.W. Kim for the HPGe measurements. This research was funded by the Institute for Basic Science (Korea) under project code IBS-R016-D1.

References

  1. 1.
    Fukuda S et al (2001) Solar 8B and Hep neutrino measurements from 1258 days of super-kamiokande data. Phys Rev Lett 86(25):5651–5655CrossRefGoogle Scholar
  2. 2.
    Mohapatra RN (2007) Theory of neutrinos: a white paper. Rep Prog Phys. doi: 10.1088/0034-4885/70/11/R02 Google Scholar
  3. 3.
    Giuliani A, Poves A (2012) Neutrinoless double-beta decay. Adv High Energy Phys. doi: 10.1155/2012/857016 Google Scholar
  4. 4.
    Gando A et al (2016) Search for Majorana neutrinos near the inverted mass hierarchy region with KamLAND-Zen. Phys Rev Lett. doi: 10.1103/PhysRevLett.117.082503 Google Scholar
  5. 5.
    Abgrall N et al (2014) The Majorana demonstrator neutrinoless double-beta decay experiment. Adv High Energy Phys. doi: 10.1155/2014/365432 Google Scholar
  6. 6.
    Alduino C et al (2017) CUORE sensitivity to 0νββ decay. Eur Phys J C. doi: 10.1140/epjc/s10052-017-5098-9 Google Scholar
  7. 7.
    Arnold R et al (2015) Result of the search for neutrinoless double-β decay in 100Mo with the NEMO-3 experiment. Phys Rev D. doi: 10.1103/PhysRevD.92.072011 Google Scholar
  8. 8.
    Alenkov V et al (2015) Technical design report for the AMoRE 0νββ decay search experiment. https://arxiv.org/pdf/1512.05957.pdf. Accessed 5 Sep 2017
  9. 9.
    Rahaman S (2008) Q values of the 76Ge and 100Mo double-beta decays. Phys Lett B. doi: 10.1016/j.physletb.2008.02.047 Google Scholar
  10. 10.
    Meija J et al (2013) Isotopic compositions of the elements 2013 (IUPAC technical report). Pure Appl Chem. doi: 10.1515/pac-2015-0503 Google Scholar
  11. 11.
    Alenkov VV (2013) Ultrapurification of isotopically enriched materials for 40Ca100MoO4 crystal growth. Inorg Mater. doi: 10.1134/S0020168513120029 Google Scholar
  12. 12.
    Firestone RB (1996) Table of isotopes, 8th edn. Wiley, New YorkGoogle Scholar
  13. 13.
    Shlegel VN, Berge L, Boiko RS (2014) Purification of molybdenum oxide, growth and characterization of medium size zinc molybdate crystals for the LUMINEU program. EPJ Web Conf. doi: 10.1051/epjconf/20136503001 Google Scholar
  14. 14.
    Shubin A, Kulinich Yu, Skorynin G et al (2006) Gas centrifuges in the production of high-purity volatile substances. In: Proc. XI Int Sci Conf physicochemical process in the selection of atoms and molecules and in laser, plasma, and nanotechologies, TsNIIATOMINFORM, Zvenigorod (Rus)Google Scholar
  15. 15.
    Somorjai G-A (1968) Mechanism of Sublimation. Science 162:755–760CrossRefGoogle Scholar
  16. 16.
    Clarence D, Chiola V (1968) Process for purifying molybdenum trioxide. Patent no. US3393971 A. Patented 23 Jul 1968Google Scholar
  17. 17.
    Lu WA, Zhang GH, Jie DA, Chou KC (2015) Oxidation roasting of molybdenite concentrate. Trans Nonferr Met Soc. doi: 10.1016/S1003-6326(15)64067-5 Google Scholar
  18. 18.
    Kirby HW, Salutsky Murrell L (1964) NAS-NS 3057 the radiochemistry of radium. National Academy of Sciences - National Research Council. Nuclear Science SeriesGoogle Scholar
  19. 19.
    Scadden EM, Ballou NE (1960) NAS-NS 3009 the radiochemistry of molybdenum. National Academy of Sciences - National Research Council. Nuclear Science SeriesGoogle Scholar
  20. 20.
    Kujirai O, Yamada K, Fresenius KM (1991) Simultaneous determination of traces of impurities in high-purity molybdenum and molybdenum trioxide by coprecipitation and inductively coupled plasma-atomic emission spectrometry. J Anal Chem. doi: 10.1007/BF00324398 Google Scholar
  21. 21.
    Mogi F, Itoh K, Okamoto N, Narita M, Fujine M (1988) Determination of trace impurities in high-purity molybdenum and tungsten. Denki Seiko 59:263–270CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  1. 1.Center for Underground Physics, IBSDaejeonKorea
  2. 2.Department of PhysicsKyungpook National UniversityDaeguKorea
  3. 3.Froumkin’s Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences (IPCE RAS)MoscowRussia

Personalised recommendations