Skip to main content
Log in

Activation product analysis in a mixed sample containing both fission and neutron activation products

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

This work describes a radiochemical separation procedure for the determination of gold (Au), platinum (Pt), tantalum (Ta), and tungsten (W) activation in the presence of fission products. Chemical separations result in a reduction in the minimum detectable activity by a factor of 287, 207, 141, and 471 for 182Ta, 187W, 197Pt, and 198Au respectively, with greater than 90% recovery for all elements. These results represent the highest recoveries and lowest minimum detectable activities for 182Ta, 187W, 197Pt, and 198Au from mixed fission-activation product samples to date, enabling considerable refinement in the measurement uncertainties for neutron fluences in highly complex sample matrices.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Morrison SS, Seiner BN, Eggemeyer TA, Haney MM, Corey Hines C, King MD, Metz LA, Morley SM, Uhnak NE, Wall DE, Zhang Z, Clark SB (2016) A chemical separation procedure using ionic liquid extraction for 59Fe and 55Fe quantification. J Radioanal Nucl Chem 307(3):2479–2485. doi:10.1007/s10967-015-4403-z

    Article  CAS  Google Scholar 

  2. Muramatsu Y, Noda Y, Yonehara H, Ishigure N, Yoshida S, Yukawa M, Tagami K, Ban-Nai T, Uchida S, Hirama T, Akashi M, Nakamura Y (2001) Determination of radionuclides produced by neutrons in heavily exposed workers of the JCO criticality accident in Tokai-mura for estimating an individual’s neutron fluence. J Radiat Res 2001(42):S117–S128. doi:10.1269/jrr.42.S117

    Article  Google Scholar 

  3. Wieslander JSE, Lovestam G, Hult M, Fessler A, Gasparro J, Kockerols P (2010) Validation of a method for neutron dosimetry and spectrometry using neutron activation of metal discs. Radiat Prot Dosim 138(3):205–212. doi:10.1093/rpd/ncp258

    Article  CAS  Google Scholar 

  4. Craft AE, O’Brien RC, Howe SD, King JC (2014) Submersion criticality safety of tungsten-rhenium urania cermet fuel for space propulsion and power applications. Nucl Eng Des 273:143–149. doi:10.1016/j.nucengdes.2014.01.028

    Article  CAS  Google Scholar 

  5. Jiang JQ, Yuan BX, Zou J, Wu YC (2014) Activation analysis and waste management for blanket materials of multi-functional experimental fusion-fission hybrid reactor (FDS-MFX). Fusion Eng Des 89(4):405–411. doi:10.1016/j.fusengdes.2014.03.061

    Article  CAS  Google Scholar 

  6. Pierson BD, Finn EC, Friese JI, Greenwood LR, Kephart JD, Kephart RF, Metz LA (2013) Identifying and quantifying short-lived fission products from thermal fission of HEU using portable HPGe detectors. J Radioanal Nucl Chem 295(3):1881–1885. doi:10.1007/s10967-012-2109-z

    Article  CAS  Google Scholar 

  7. Gouveia MA, Prudencio MI, Freitas MC, Martinho E, Cabral JMP (1987) Interference from uranium fission products in the determination of rare earths, zirconium and ruthenium by instrumental neutron activation analysis in rocks and minerals. J Radioanal Nucl Chem 114(2):309–318. doi:10.1007/bf02039805

    Article  CAS  Google Scholar 

  8. Nagy P, Vajda N, Sziklai-László I, Kovács-Széles É, Simonits A (2014) Determination of 135Cs in nuclear power plant wastes by ICP-MS and k 0-NAA. J Radioanal Nucl Chem 300(2):615–627. doi:10.1007/s10967-013-2875-2

    Article  CAS  Google Scholar 

  9. Douglas M, Friese JI, Greenwood LR, Farmer O III, Thomas M, Maiti TC, Finn EC, Garofoli SJ, Gassman PL, Huff MM (2009) Separation and quantification of chemically diverse analytes in neutron irradiated fissile materials. J Radioanal Nucl Chem 282(1):63–68. doi:10.1007/s10967-009-0263-8

    Article  CAS  Google Scholar 

  10. Gharibyan N, Moody KJ, Despotopulos JD, Grant PM, Shaughnessy DA (2013) First fission yield measurements at the national ignition facility: 14-MeV Neutron Fission of U238. J Radioanal Nucl Chem 303(2):1335–1338

    Article  Google Scholar 

  11. Morley SM, Seiner B, Finn E, Greenwood L, Smith SC, Gregory S, Haney M, Lucas D, Arrigo L, Beacham T, Swearingen K, Friese J, Douglas M, Metz L (2015) Integrated separation scheme for measuring a suite of fission and activation products from a fresh mixed fission and activation product sample. J Radioanal Nucl Chem 304(2):509–515. doi:10.1007/s10967-014-3826-2

    Article  CAS  Google Scholar 

  12. Baum EM, Knox HD, Miller TR (2010) Nuclides and isotopes: chart of the nuclides. Knolls Atomic Power Laboratory, Niskayuna

    Google Scholar 

  13. Basunia M (2009) Nuclear data sheets for A = 187. Nucl Data Sheets 110(5):999–1238

    Article  CAS  Google Scholar 

  14. Huang X, Zhou C (2005) Nuclear data sheets for A = 197. Nucl Data Sheets 104(2):283–426

    Article  CAS  Google Scholar 

  15. Singh B (2015) Nuclear data sheets for A = 182. Nucl Data Sheets 130:21–126

    Article  CAS  Google Scholar 

  16. Xiaolong H (2009) Nuclear data sheets for A = 198. Nucl Data Sheets 110(10):2533–2688

    Article  Google Scholar 

  17. England T, Rider B (1994) Fission product yields per 100 fissions for 235U thermal neutron induced fission decay. Los Alamos National Laboratory, Los Alamos

    Google Scholar 

  18. Currie LA (1968) Limits for qualitative detection and quantitative determination. Application to radiochemistry. Anal Chem 40(3):586–593. doi:10.1021/ac60259a007

    Article  CAS  Google Scholar 

  19. Ludek J, Wei Y, Mikio K (2006) Adsorption of Ce(IV) anionic nitrato complexes onto anion exchangers and its application for Ce(IV) separation from rare earths(III). J Rare Earths 24(4):385–391. doi:10.1016/S1002-0721(06)60129-4

    Article  Google Scholar 

  20. Hu Q, Zhao P, Moran JE, Seaman JC (2005) Sorption and transport of iodine species in sediments from the Savannah River and Hanford sites. J Contam Hydrol 78(3):185–205. doi:10.1016/j.jconhyd.2005.05.007

    Article  CAS  Google Scholar 

  21. Münker C, Weyer S, Scherer E, Mezger K (2001) Separation of high field strength elements (Nb, Ta, Zr, Hf) and Lu from rock samples for MC-ICPMS measurements. Geochem Geophys Geosyst 2:19. doi:10.1029/2001gc000183

    Article  Google Scholar 

  22. Pearson DG, Woodland SJ (2000) Solvent extraction/anion exchange separation and determination of PGEs (Os, Ir, Pt, Pd, Ru) and Re–Os isotopes in geological samples by isotope dilution ICP–MS. Chem Geol 165(1–2):87–107. doi:10.1016/S0009-2541(99)00161-8

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the U.S. Department of Energy’s National Nuclear Security Administration, Office of Defense Nuclear Nonproliferation Research and Development for funding this research under contract DE-AC05-76RL01830.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel S. Morrison.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 108 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morrison, S.S., Clark, S.B., Eggemeyer, T.A. et al. Activation product analysis in a mixed sample containing both fission and neutron activation products. J Radioanal Nucl Chem 314, 2501–2506 (2017). https://doi.org/10.1007/s10967-017-5563-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-017-5563-9

Keywords

Navigation