Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 314, Issue 2, pp 829–841 | Cite as

A review of the developments of radioxenon detectors for nuclear explosion monitoring

  • Ciara B. Sivels
  • Justin I. McIntyre
  • Theodore W. Bowyer
  • Martin B. Kalinowski
  • Sara A. Pozzi
Article

Abstract

Developments in radioxenon monitoring since the implementation of the International Monitoring System are reviewed with emphasis on the most current technologies to improve detector sensitivity and resolution. The nuclear detectors reviewed include combinations of plastic and NaI(Tl) detectors, high purity germanium detectors, silicon detectors, and phoswich detectors. The minimum detectable activity and calibration methods for the various detectors are also discussed.

Keywords

Radioxenon Comprehensive Nuclear-Test-Ban Treaty International Monitoring System Explosion monitoring Minimum detectable activity Calibration 

Notes

Disclaimer

The views expressed in this publication are those of the authors and do not necessarily reflect the views of the CTBTO Preparatory Commission or any of the participating institutions.

References

  1. 1.
    Richards PG, Kim WY (2009) Monitoring for nuclear explosions. Sci Amer 300:70–77. doi: 10.1038/scientificamerican0309-70 CrossRefGoogle Scholar
  2. 2.
    Bolmsjoe M, Persson B (1982) A new instrument for survey monitoring of airborne Xe-133. Phys Med Biol 27:861–866CrossRefGoogle Scholar
  3. 3.
    Schölch J, Stich W, MÜnnich KO (1966) Measurement of radioactive xenon in the atmosphere. Tellus 18:298–300. doi: 10.1111/j.2153-3490.1966.tb00241.x CrossRefGoogle Scholar
  4. 4.
    Stockburger H, Sartorius H, Sittkus A (1977) Messung der krypton-85-und xenon-133-aktivität der atmosphärischen luft/a method for measurement of the krypton-85 and xenon-133-content in the atmosphere. Zeitschrift Naturforschung Teil A 32:1249–1253. doi: 10.1515/zna-1977-1108 Google Scholar
  5. 5.
    Ehhalt D, Münnich KO, Roether W et al (1963) Artificially produced radioactive noble gases in the atmosphere. J Geophys Res 68:3817–3821. doi: 10.1029/JZ068i013p03817 CrossRefGoogle Scholar
  6. 6.
    Ludwick JD (1966) Xenon 133 as an atmospheric tracer. J Geophys Res 71(20):4743–4748. doi: 10.1029/JZ071i020p04743 CrossRefGoogle Scholar
  7. 7.
    Steinkopff T, Dyck W, Frank G et al (2004) The measurement of radioactive noble gases by DWD in the frame of the global atmospheric watch programme of WMO. Appl Radiat Isot 61(2):225–230. doi: 10.1016/j.apradiso.2004.03.050 CrossRefGoogle Scholar
  8. 8.
    Saey PRJ, Schlosser C, Achim P et al (2010) Environmental radioxenon levels in Europe: a comprehensive overview. Pure Appl Geophys 167:499–515. doi: 10.1007/s00024-009-0034-z CrossRefGoogle Scholar
  9. 9.
    Burr W, Montford HL (2003) The making of the limited test ban treaty, 1958–1963. http://nsarchive.gwu.edu/NSAEBB/NSAEBB94/index.htm
  10. 10.
    General US (1959) Report of the conference of experts to study the possible measures which might be helpful in preventing surprise attack and for the preparation of a report thereon to governments: note/by the secretary-general. http://hdl.handle.net/11176/83054
  11. 11.
    Limited test ban treaty. http://www.state.gov/t/isn/4797.htm
  12. 12.
    Comprehensive nuclear-test-ban treaty. https://www.ctbto.org/the-treaty/treaty-text/
  13. 13.
    Perkins RW, Casey LA (1996) Radioxenons: their role in monitoring a comprehensive test ban treaty. Pacific Northwest National Lab., Richland, WA https://www.osti.gov/scitech/servlets/purl/266641/
  14. 14.
    Schulze J, Auer M, Werzi R (2000) Low level radioactivity measurement in support of the CTBTO. Appl Radiat Isot 53(1–2):23–30. doi: 10.1016/S0969-8043(00)00182-2 CrossRefGoogle Scholar
  15. 15.
    Medici F (2001) The IMS radionuclide network of the CTBT. Radiat Phys Chem 61:689–690. doi: 10.1016/S0969-806X(01)00375-9 CrossRefGoogle Scholar
  16. 16.
    Fontaine JP, Pointurier F, Blanchard X, Taffary T (2004) Atmospheric xenon radioactive isotope monitoring. J Environ Radioact 72(1–2):129–135. doi: 10.1016/S0265-931X(03)00194-2 CrossRefGoogle Scholar
  17. 17.
    McIntyre JI, Abel KH, Bowyer TW et al (2001) Measurements of ambient radioxenon levels using the automated radioxenon sampler/analyzer (ARSA). J Radioanal Nucl Chem 248(3):629–635. doi: 10.1023/A:1010672107749 CrossRefGoogle Scholar
  18. 18.
    Ringbom A, Larson T, Axelsson A et al (2003) SAUNA—a system for automatic sampling, processing, and analysis of radioactive xenon. Nucl Instrum Meth Phys Res Sect A 508(3):542–553. doi: 10.1016/S0168-9002(03)01657-7 CrossRefGoogle Scholar
  19. 19.
    Prelovskii VV, Kazarinov NM, Donets AY et al (2007) The ARIX-03f mobile semiautomatic facility for measuring low concentrations of radioactive xenon isotopes in air and subsoil gas. Instrum Exp Tech 50(3):393–397. doi: 10.1134/S0020441207030165 CrossRefGoogle Scholar
  20. 20.
    Dubasov YV, Popov YS, Prelovskii VV et al (2005) The APИКC-01 automatic facility for measuring concentrations of radioactive xenon isotopes in the atmosphere. Instrum Exp Tech 48(3):373–379. doi: 10.1007/s10786-005-0065-3 CrossRefGoogle Scholar
  21. 21.
    Auer M, Axelsson A, Blanchard X et al (2004) Intercomparison experiments of systems for the measurement of xenon radionuclides in the atmosphere. Appl Radiat Isot 60(6):863–877. doi: 10.1016/j.apradiso.2004.01.011 CrossRefGoogle Scholar
  22. 22.
    Auer M, Kumberg T, Sartorius H et al (2010) Ten years of development of equipment for measurement of atmospheric radioactive xenon for the verification of the CTBT. Pure Appl Geophys 167(4):471–486. doi: 10.1007/s00024-009-0027-y CrossRefGoogle Scholar
  23. 23.
    Bowyer T, Abel K, Hensley W, Panisko M, Perkins R (1997) Ambient 133Xe levels in the northeast US. J Environ Radioact 37(2):143–153. doi: 10.1016/S0265-931X(97)00005-2 CrossRefGoogle Scholar
  24. 24.
    Mason LR, Bohner JD, Williams DL (1998) Airborne anthropogenic radioactivity measurements from an international radionuclide monitoring system. J Radioanal and Nucl Chem 235(1):71–75. doi: 10.1007/BF02385940 CrossRefGoogle Scholar
  25. 25.
    Saey P, Geer LED (2005) Notes on radioxenon measurements for CTBT verification purposes. Appl Radiat Isot 63(5–6):765–773. doi: 10.1016/j.apadiso.2005.05.035 CrossRefGoogle Scholar
  26. 26.
    Kalinowski MB, Pistner C (2006) Isotopic signature of atmospheric xenon released from light water reactors. J Environ Radioact 88(3):215–235. doi: 10.1016/j.jenvrad.2006.02.003 CrossRefGoogle Scholar
  27. 27.
    Klingberg FJ, Biegalski SR, Fay AG (2013) Radioxenon signatures from activation of environmental xenon. J Radioanal Nucl Chem 296:117–123. doi: 10.1007/s10967-012-1982-9 CrossRefGoogle Scholar
  28. 28.
    Steinhauser G, Lechermann M, Axelsson A et al (2013) Research reactors as sources of atmospheric radioxenon. J Radioanal Nucl Chem 296:169–174. doi: 10.1007/s10967-012-1949-x CrossRefGoogle Scholar
  29. 29.
    McIntyre JI, Agusbudiman A, Cameron IM et al (2016) Real-time stack monitoring at the batek medical isotope production facility. J Radioanal Nucl Chem 308:311–316. doi: 10.1007/s10967-015-4348-2 CrossRefGoogle Scholar
  30. 30.
    Tayyebi P, Davani FA, Tabasi M et al (2017) Computational investigation of isotopic signature of radioxenon released from Tehran research reactor. J Radioanal Nucl Chem 311:571–576. doi: 10.1007/s10967-016-5024-x CrossRefGoogle Scholar
  31. 31.
    Bowyer T, Biegalski S, Cooper M et al (2011) Elevated radioxenon detected remotely following the Fukushima nuclear accident. J Environ Radioact 102:681–687. doi: 10.1016/j.jenvrad.2011.04.009 CrossRefGoogle Scholar
  32. 32.
    Sinclair L, Seywerd H, Fortin R et al (2011) Aerial measurement of radioxenon concentration off the west coast of Vancouver Island following the Fukushima reactor accident. J Environ Radioact 102:1018–1023. doi: 10.1016/j.jenvrad.2011.06.008 CrossRefGoogle Scholar
  33. 33.
    Stohl A, Seibert P, Wotawa G et al (2012) Xenon-133 and caesium-137 releases into the atmosphere from the Fukushima Dai-ichi nuclear power plant: determination of the source term, atmospheric dispersion, and deposition. Atmos Chem Phys 12:2313–2343. doi: 10.5194/acp-12-2313-2012 CrossRefGoogle Scholar
  34. 34.
    Stohl A, Seibert P, Wotawa G (2012) The total release of xenon-133 from the Fukushima Dai-ichi nuclear power plant accident. J Environ Radioact 112:155–159. doi: 10.1016/j.jenvrad.2012.06.001 CrossRefGoogle Scholar
  35. 35.
    Eslinger P, Biegalski S, Bowyer T et al (2014) Source term estimation of radioxenon released from the Fukushima Dai-ichi nuclear reactors using measured air concentrations and atmospheric transport modeling. J Environ Radioact 127:127–132. doi: 10.1016/j.jenvrad.2013.10.013 CrossRefGoogle Scholar
  36. 36.
    Xie F, He X, Jiang W et al (2014) Development of a radioxenon measurement system and its application in monitoring Fukushima nuclear accident. Radiat Phys Chem 97:85–89. doi: 10.1016/j.radphyschem.2013.11.011 CrossRefGoogle Scholar
  37. 37.
    Saey PRJ, Bean M, Becker A et al (2007) A long distance measurement of radioxenon in Yellowknife, Canada, in late October 2006. Geophys Res Lett 34:L20802. doi: 10.1029/2007GL030611 CrossRefGoogle Scholar
  38. 38.
    Ringbom A, Elmgren K, Lindh K et al (2009) Measurements of radioxenon in ground level air in South Korea following the claimed nuclear test in North Korea on October 9, 2006. J Radioanal Nucl Chem 282:773. doi: 10.1007/s10967-009-0271-8 CrossRefGoogle Scholar
  39. 39.
    Becker A, Wotawa G, Ringbom A, Saey PR (2010) Backtracking of noble gas measurements taken in the aftermath of the announced October 2006 event in North Korea by means of PTS methods in nuclear source estimation and reconstruction. Pure Appl Geophys 167:581–599. doi: 10.1007/s00024-009-0025-0 CrossRefGoogle Scholar
  40. 40.
    Ringbom A, Axelsson A, Aldener M et al (2014) Radioxenon detections in the CTBT international monitoring system likely related to the announced nuclear test in North Korea on February 12, 2013. J Environ Radioact 128:47–63. doi: 10.1016/j.jenvrad.2013.10.027 CrossRefGoogle Scholar
  41. 41.
    Hoffman I, Ungar K, Bean M et al (2009) Changes in radioxenon observations in Canada and Europe during medical isotope production facility shut down in 2008. J Radioanal Nucl Chem 282:767. doi: 10.1007/s10967-009-0235-z CrossRefGoogle Scholar
  42. 42.
    Saey PR (2009) The influence of radiopharmaceutical isotope production on the global radioxenon background. J Environ Radioact 100:396–406. doi: 10.1016/j.jenvrad.2009.01.004 CrossRefGoogle Scholar
  43. 43.
    Biegalski SR, Saller T, Helfand J, Biegalski KMF (2010) Sensitivity study on modeling radioxenon signals from radiopharmaceutical production facilities. J Radioanal Nucl Chem 284:663–668. doi: 10.1007/s10967-010-0533-5 CrossRefGoogle Scholar
  44. 44.
    Saey PR, Bowyer TW, Ringbom A (2010) Isotopic noble gas signatures released from medical isotope production facilities—simulations and measurements. Appl Radiat Isot 68:1846–1854. doi: 10.1016/j.apradiso.2010.04.014 CrossRefGoogle Scholar
  45. 45.
    Saey PR, Auer M, Becker A et al (2010) The influence on the radioxenon background during the temporary suspension of operations of three major medical isotope production facilities in the northern hemisphere and during the start-up of another facility in the southern hemisphere. J Environ Radioact 101:730–738. doi: 10.1016/j.jenvrad.2010.04.016 CrossRefGoogle Scholar
  46. 46.
    Bowyer TW, Kephart R, Eslinger PW et al (2013) Maximum reasonable radioxenon releases from medical isotope production facilities and their effect on monitoring nuclear explosions. J Environ Radioact 115:192–200. doi: 10.1016/j.jenvrad.2012.07.018 CrossRefGoogle Scholar
  47. 47.
    Bowyer T, Eslinger P, Cameron I et al (2014) Potential impact of releases from a new molybdenum-99 production facility on regional measurements of airborne xenon isotopes. J Environ Radioact 129:43–47. doi: 10.1016/j.jenvrad.2013.11.012 CrossRefGoogle Scholar
  48. 48.
    Doll CG, Sorensen CM, Bowyer TW et al (2014) Abatement of xenon and iodine emissions from medical isotope production facilities. J Environ Radioact 130:33–43. doi: 10.1016/j.jenvrad.2013.12.006 CrossRefGoogle Scholar
  49. 49.
    Eslinger PW, Friese JI, Lowrey JD et al (2014) Estimates of radioxenon released from southern hemisphere medical isotope production facilities using measured air concentrations and atmospheric transport modeling. J Environ Radioact 135:94–99. doi: 10.1016/j.jenvrad.2014.04.006 CrossRefGoogle Scholar
  50. 50.
    Eslinger PW, Cameron IM, Dumais JR et al (2015) Source term estimates of radioxenon released from the Batek medical isotope production facility using external measured air concentrations. J Environ Radioact 148:10–15. doi: 10.1016/j.jenvrad.2015.05.026 CrossRefGoogle Scholar
  51. 51.
    Eslinger PW, Bowyer TW, Achim P et al (2016) International challenge to predict the impact of radioxenon releases from medical isotope production on a comprehensive nuclear test ban treaty sampling station. J Environ Radioact 157:41–51. doi: 10.1016/j.jenvrad.2016.03.001 CrossRefGoogle Scholar
  52. 52.
    Johnson C, Biegalski S, Haas D et al (2017) Detection in subsurface air of radioxenon released from medical isotope production. J Environ Radioact 167:160–165. doi: 10.1016/j.jenvrad.2016.10.021 CrossRefGoogle Scholar
  53. 53.
    Bowyer T, Schlosser C, Abel K et al (2002) Detection and analysis of xenon isotopes for the comprehensive nuclear-test-ban treaty international monitoring system. J Environ Radioact 59:139–151. doi: 10.1016/S0265-931X(01)00042-X CrossRefGoogle Scholar
  54. 54.
    Bieringer J, Schlosser C (2004) Monitoring ground-level air for trace analysis: methods and results. Anal Bioanal Chem 379:234–241. doi: 10.1007/s00216-004-2499-z CrossRefGoogle Scholar
  55. 55.
    Stocki TJ, Bean M, Ungar RK et al (2004) Low level noble gas measurements in the field and laboratory in support of the comprehensive nuclear-test-ban treaty. Appl Radiat Isot 61:231–235. doi: 10.1016/j.apradiso.2004.03.051 CrossRefGoogle Scholar
  56. 56.
    Kalinowski MB, Tuma MP (2009) Global radioxenon emission inventory based on nuclear power reactor reports. J Environ Radioact 100:58–70. doi: 10.1016/j.jenvrad.2008.10.015 CrossRefGoogle Scholar
  57. 57.
    Wotawa G, Becker A, Kalinowski M et al (2010) Computation and analysis of the global distribution of the radioxenon isotope 133Xe based on emissions from nuclear power plants and radioisotope production facilities and its relevance for the verification of the nuclear-test-ban treaty. Pure Appl Geophys 167:541–557. doi: 10.1007/s00024-009-0033-0 CrossRefGoogle Scholar
  58. 58.
    Plastino W, Plenteda R, Azzari G et al (2010) Radioxenon time series and meteorological pattern analysis for CTBT event categorisation. Pure Appl Geophys 167:559–573. doi: 10.1007/s00024-009-0030-3 CrossRefGoogle Scholar
  59. 59.
    Saey PRJ, Ringbom A, Bowyer TW et al (2013) Worldwide measurements of radioxenon background near isotope production facilities, a nuclear power plant and at remote sites: the “EU/JA-ii” project. J Radioanal Nucl Chem 296:1133–1142. doi: 10.1007/s10967-012-2025-2 CrossRefGoogle Scholar
  60. 60.
    Kalinowski MB, Grosch M, Hebel S (2014) Global xenon-133 emission inventory caused by medical isotope production and derived from the worldwide technetium-99m demand. Pure Appl Geophys 171:707–716. doi: 10.1007/s00024-013-0687-5 CrossRefGoogle Scholar
  61. 61.
    Schoeppner M, Plastino W (2014) Determination of the global coverage of the IMS xenon-133 component for the detection of nuclear explosions. Sci Glob Secur 22:209–234. doi: 10.1080/08929882.2014.952581 CrossRefGoogle Scholar
  62. 62.
    Achim P, Generoso S, Morin M et al (2016) Characterization of xe-133 global atmospheric background: implications for the international monitoring system of the comprehensive nuclear-test-ban treaty. J Geophys Res 121:4951–4966. doi: 10.1002/2016JD024872 Google Scholar
  63. 63.
    Bowyer TW, Abel KH, Hubbard CW et al (1998) Automated separation and measurement of radioxenon for the comprehensive test ban treaty. J Radioanal Nucl Chem 235:77–82. doi: 10.1007/BF02385941 CrossRefGoogle Scholar
  64. 64.
    Bowyer TW, Abel KH, Hubbard CW et al (1999) Field testing of collection and measurement of radioxenon for the comprehensive test ban treaty. J Radioanal Nucl Chem 240:109–122. doi: 10.1007/BF02349143 CrossRefGoogle Scholar
  65. 65.
    Haas DA, Eslinger PW, Bowyer TW et al (2017) Improved performance comparisons of radioxenon systems for low level releases in nuclear explosion monitoring. J Environ Radioact 178–179:127–135. doi: 10.1016/j.jenvrad.2017.08.005 CrossRefGoogle Scholar
  66. 66.
    Kalinowski MB, Axelsson A, Bean M et al (2010) Discrimination of nuclear explosions against civilian sources based on atmospheric xenon isotopic activity ratios. Pure Appl Geophys 167:517–539. doi: 10.1007/s00024-009-0032-1 CrossRefGoogle Scholar
  67. 67.
    Stocki TJ, Li G, Japkowicz N, Ungar RK (2010) Machine learning for radioxenon event classification for the comprehensive nuclear-test-ban treaty. J Environ Radioact 101:68–74. doi: 10.1016/j.jenvrad.2009.08.015 CrossRefGoogle Scholar
  68. 68.
    Kalinowski MB (2011) Characterisation of prompt and delayed atmospheric radioactivity releases from underground nuclear tests at Nevada as a function of release time. J Environ Radioact 102:824–836. doi: 10.1016/j.jenvrad.2011.05.006 CrossRefGoogle Scholar
  69. 69.
    Kalinowski MB, Liao Y-Y, Pistner C (2014) Discrimination of nuclear explosions against civilian sources based on atmospheric radioiodine isotopic activity ratios. Pure Appl Geophys 171:669–676. doi: 10.1007/s00024-012-0564-7 CrossRefGoogle Scholar
  70. 70.
    Kalinowski MB, Liao Y-Y (2014) Isotopic characterization of radioiodine and radioxenon in releases from underground nuclear explosions with various degrees of fractionation. Pure Appl Geophys 171:677–692. doi: 10.1007/s00024-012-0580-7 CrossRefGoogle Scholar
  71. 71.
    Sloan J, Sun Y, Carrigan C (2016) Uncertainty quantification for discrimination of nuclear events as violations of the comprehensive nuclear-test-ban treaty. J Environ Radioact 155–156:130–139. doi: 10.1016/j.jenvrad.2016.02.022 CrossRefGoogle Scholar
  72. 72.
    Zahringer M, Becker A, Nikkinen M et al (2009) CTBT radioxenon monitoring for verification: today’s challenges. J Radioanal Nucl Chem 282:737. doi: 10.1007/s10967-009-0207-3 CrossRefGoogle Scholar
  73. 73.
    Le Petit G, Armand P, Brachet G et al (2008) Contribution to the development of atmospheric radioxenon monitoring. J Radioanal Nucl Chem 276:391–398. doi: 10.1007/s10967-008-0517-x CrossRefGoogle Scholar
  74. 74.
    Stocki T, Armand P, Heinrich P et al (2008) Measurement and modelling of radioxenon plumes in the Ottawa valley. J Environ Radioact 99:1775–1788. doi: 10.1016/j.jenvrad.2008.07.009 CrossRefGoogle Scholar
  75. 75.
    Schoppner M, Plastino W, Hermanspahn N et al (2013) Atmospheric transport modelling of time resolved 133Xe emissions from the isotope production facility Ansto, Australia. J Environ Radioact 126:1–7. doi: 10.1016/j.jenvrad.2013.07.003 CrossRefGoogle Scholar
  76. 76.
    Johnson C, Lowrey J, Biegalski S, Haas D (2015) Regional transport of radioxenon released from the chalk river laboratories medical isotope facility. J Radioanal Nucl Chem 305:207–212. doi: 10.1007/s10967-015-4077-6 CrossRefGoogle Scholar
  77. 77.
    Eslinger PW, Bowyer TW, Cameron IM et al (2015) Atmospheric plume progression as a function of time and distance from the release point for radioactive isotopes. J Environ Radioact 148:123–129. doi: 10.1016/j.jenvrad.2015.06.022 CrossRefGoogle Scholar
  78. 78.
    Johnson C, Lowrey J, Biegalski S, Haas D (2016) Examination of local atmospheric transport of radioxenon in the Ottawa river valley. J Radioanal Nucl Chem 307:2155–2159. doi: 10.1007/s10967-015-4488-4 CrossRefGoogle Scholar
  79. 79.
    Meutter PD, Camps J, Delcloo A et al (2016) On the capability to model the background and its uncertainty of CTBT-relevant radioxenon isotopes in Europe by using ensemble dispersion modeling. J Environ Radioact 164:280–290. doi: 10.1016/j.jenvrad.2016.07.033 CrossRefGoogle Scholar
  80. 80.
    Maceira M, Blom PS, MacCarthy JK et al (2017) Trends in nuclear explosion monitoring research & development—a physics perspective. doi: 10.2172/1355758 CrossRefGoogle Scholar
  81. 81.
    Firestone RB, Baglin CM, Chu S (1999) Table of isotopes. Wiley, New YorkGoogle Scholar
  82. 82.
    Currie LA (1968) Limits for qualitative detection and quantitative determination. Application to radiochemistry. Anal Chem 40:586–593CrossRefGoogle Scholar
  83. 83.
    Foltz Biegalski KM, Biegalski SR (2001) Determining detection limits and minimum detectable concentrations for noble gas detectors utilizing beta–gamma coincidence systems. J Radioanal Nucl Chem 248:673–682. doi: 10.1023/A:1010684410475 CrossRefGoogle Scholar
  84. 84.
    Reeder PL, Bowyer TW, McIntyre JI, Pitts WK (2001) Determination of 131mXe and 133mXe in the presence of 133gXe via combined beta–spectroscopy and delayed coincidence. J Radioanal Nucl Chem 248:617–622. doi: 10.1023/A:1010668006840 CrossRefGoogle Scholar
  85. 85.
    Axelsson A, Ringbom A (2003) Xenon air activity concentration analysis from coincidence data. FOI Swedish Defense Research AgencyGoogle Scholar
  86. 86.
    McIntyre JI, Bowyer TW, Reeder PL (2006) Calculation of minimum detectable concentration levels of radioxenon isotopes using the PNNL ARSA system. doi: 10.2172/888707
  87. 87.
    Anderson DN, Fagan DK, Suarez R et al (2007) Sensor analytics: radioactive gas concentration estimation and error propagation. Stat Probab Lett 77:769–773. doi: 10.1016/j.spl.2006.11.014 CrossRefGoogle Scholar
  88. 88.
    Zahringer M, Kirchner G (2008) Nuclide ratios and source identification from high-resolution gamma-ray spectra with Bayesian decision methods. Nucl Instrum Meth Phys Res Sect A 594:400–406. doi: 10.1016/j.nima.2008.06.044 CrossRefGoogle Scholar
  89. 89.
    Vivier A, Le Petit G, Pigeon B, Blanchard X (2009) Probabilistic assessment for a sample to be radioactive or not: application to radioxenon analysis. J Radioanal Nucl Chem 282:743. doi: 10.1007/s10967-009-0315-0 CrossRefGoogle Scholar
  90. 90.
    Axelsson A, Martensson L, Mortsell A, Ringbom A (2010) Improvement of the sauna noble gas system calibration. FOI Swedish Defence Research AgencyGoogle Scholar
  91. 91.
    Cagniant A, Petit GL, Gross P et al (2014) Improvements of low-level radioxenon detection sensitivity by a state-of-the art coincidence setup. Appl Radiat Isot 87:48–52. doi: 10.1016/j.apradiso.2013.11.078 CrossRefGoogle Scholar
  92. 92.
    Le Petit G, Cagniant A, Gross P et al (2015) Spalax new generation: a sensitive and selective noble gas system for nuclear explosion monitoring. Appl Radiat Isot 103:102–114. doi: 10.1016/j.apradiso.2015.05.019 CrossRefGoogle Scholar
  93. 93.
    Zhang W, Ungar K, Bean M (2009) Improved radioxenon gamma-spectrometry counting system and its efficiency calibration: Monte Carlo simulation and experimental results at enriched xenon counting environment. J Radioanal Nucl Chem 279:83–91. doi: 10.1007/s10967-007-7299-z CrossRefGoogle Scholar
  94. 94.
    Lagomarsino RJ, Latner N (2007) Measurement of low levels of radioactivity with a large well germanium detector. J Radioanal Nucl Chem 274:39–43. doi: 10.1007/s10967-006-6891-3 CrossRefGoogle Scholar
  95. 95.
    Reeder PL, Bowyer TW, Perkins RW (1998) Beta–gamma counting system for xe fission products. J Radioanal Nucl Chem 235:89–94. doi: 10.1007/BF02385943 CrossRefGoogle Scholar
  96. 96.
    Popov YS, Kazarinov NM, Popov VY et al (2005) Measuring low activities of fission-product xenon isotopes using the β–γ coincidence method. Instrum Exp Tech 48:380–386. doi: 10.1007/s10786-005-0066-2 CrossRefGoogle Scholar
  97. 97.
    Bläckberg L, Fritioff T, Mårtensson L et al (2013) Memory effect, resolution, and efficiency measurements of an Al2O3 coated plastic scintillator used for radioxenon detection. Nucl Instrum Meth Phys Res Sect A 714:128–135. doi: 10.1016/j.nima.2013.02.045 CrossRefGoogle Scholar
  98. 98.
    McIntyre JI, Carman AJ, Aalseth CE et al (2004) Enhanced beta–gamma coincidence counting gas cell. In: Nuclear science symposium conference record, 2004 IEEE, vol 2. IEEE, pp 884–888Google Scholar
  99. 99.
    Cooper MW, McIntyre JI, Bowyer TW et al (2007) Redesigned β–γ radioxenon detector. Nucl Instrum Meth Phys Res Sect A 579:426–430. doi: 10.1016/j.nima.2007.04.092 CrossRefGoogle Scholar
  100. 100.
    Keillor ME, Cooper MW, Hayes JC, McIntyre JI (2009) Degradation of 81 keV 133Xe gamma-rays into the 31 keV x-ray peak in CsI scintillators. J Radioanal Nucl Chem 282:699–702. doi: 10.1007/s10967-009-0244-y CrossRefGoogle Scholar
  101. 101.
    Doost-Mohammadi V, Afarideh H, Etaati G et al (2016) INGAS: Iranian noble gas analyzing system for radioxenon measurement. Radiat Phys Chem 120:26–32. doi: 10.1016/j.radphyschem.2015.10.020 CrossRefGoogle Scholar
  102. 102.
    Hennig W, Cox CE, Asztalos SJ et al (2013) Study of silicon detectors for high resolution radioxenon measurements. J Radioanal Nucl Chem 296:675–681. doi: 10.1007/s10967-012-2053-y CrossRefGoogle Scholar
  103. 103.
    Schroettner T, Schraick I, Furch T, Kindl P (2010) A high-resolution, multi-parameter, beta–gamma coincidence, mu–gamma anticoincidence system for radioxenon measurement. Nucl Instrum Meth Phys Res Sect A 621:478–488. doi: 10.1016/j.nima.2010.06.227 CrossRefGoogle Scholar
  104. 104.
    Cox CE, Hennig W, Huber AC et al (2013) A 24-element silicon pin diode detector for high resolution radioxenon measurements using simultaneous x-ray and electron spectroscopy. In: Nuclear science symposium and medical imaging conference (NSS/MIC), 2013 IEEE. IEEE, pp 1–7Google Scholar
  105. 105.
    Le Petit G, Cagniant A, Morelle M et al (2013) Innovative concept for a major breakthrough in atmospheric radioactive xenon detection for nuclear explosion monitoring. J Radioanal Nucl Chem 298:1159–1169. doi: 10.1007/s10967-013-2525-8 CrossRefGoogle Scholar
  106. 106.
    Schell W, Vives-Batlle J, Yoon S, Tobin M (1999) High-pressure plastic scintillation detector for measuring radiogenic gases in flow systems. Nucl Instrum Meth Phys Res Sect A 421:591–600. doi: 10.1016/S0168-9002(98)01217-0 CrossRefGoogle Scholar
  107. 107.
    Lopes J, Morgado R, Conde C (2003) A metastable xenon isotope detector for treaty verification. Nucl Instrum Meth Phys Res Sect A 501:623–629. doi: 10.1016/S0168-9002(03)00621-1 CrossRefGoogle Scholar
  108. 108.
    McIntyre JI, Aalseth CE, Bowyer TW et al (2004) Triple coincidence radioxenon detector. In: 26th seismic research review—trends in nuclear explosion monitoring LA-UR-04-5801, pp 581–587Google Scholar
  109. 109.
    Ranjbar L, Farsoni AT, Becker EM (2016) A CZT-based radioxenon detection system in support of the comprehensive nuclear-test-ban treaty. J Radioanal Nucl Chem 310:969–978. doi: 10.1007/s10967-016-4872-8 CrossRefGoogle Scholar
  110. 110.
    Czyz SA, Farsoni AT (2017) A radioxenon detection system using CdZnTe, an array of SiPMs, and a plastic scintillator. J Radioanal Nucl Chem 313:131–140. doi: 10.1007/s10967-017-5287-x CrossRefGoogle Scholar
  111. 111.
    Ely JH, Aalseth CE, McIntyre JI (2005) Novel beta–gamma coincidence measurements using phoswich detectors. J Radioanal Nucl Chem 263:245–250. doi: 10.1007/s10967-005-0044-y CrossRefGoogle Scholar
  112. 112.
    McIntyre JI, Schrom B, Aalseth CE et al (2005) Beta–gamma coincidence counting using an yttrium aluminum perovskit and bismuth germanate phoswich scintillator. In: Nuclear science symposium conference record, 2005 IEEE, vol 3. IEEE, pp 1301–1304Google Scholar
  113. 113.
    Hennig W, Tan H, Warburton WK, McIntyre JI (2005) Single channel beta–gamma coincidence of radioactive xenon using digital pulse shape analysis of phoswich detector signals. In: Nuclear science symposium conference record 2005 IEEE. IEEE, pp 510–514Google Scholar
  114. 114.
    Hennig W, Warburton WK, Fallu-Labruyere A et al (2009) Development of a phoswich detector system for radioxenon monitoring. J Radioanal Nucl Chem 282:681. doi: 10.1007/s10967-009-0181-9 CrossRefGoogle Scholar
  115. 115.
    Hennig W, Warburton WK, Fallu-Labruyere A et al (2009) Radioxenon measurements with the phoswatch detector system. In: Proceedings of the 31st monitoring research review (MRR 2009): ground-based nuclear explosion monitoring technologies LA-UR-09-05276, pp 641–652Google Scholar
  116. 116.
    Hennig W, Asztalos SJ, Warburton WK et al (2014) Development of a phoswich detector for radioxenon field measurements. IEEE Trans Nucl Sci 61:2778–2785. doi: 10.1109/TNS.2014.2343158 CrossRefGoogle Scholar
  117. 117.
    Hennig W, Asztalos SJ, Warburton WK, McNally BD (2015) Development of a phoswich detector for radioxenon field measurements. https://www.ctbto.org/fileadmin/user_upload/SnT2015/SnT2015_Posters/T3.1-P7.pdf
  118. 118.
    de Celis B, de la Fuente R, Williart A, de Celis Alonso B (2007) Coincidence measurements in alpha beta gamma spectrometry with phoswich detectors using digital pulse shape discrimination analysis. Nucl Instrum Meth Phys Res Sect A 580:206–209. doi: 10.1016/j.nima.2007.05.085 CrossRefGoogle Scholar
  119. 119.
    Farsoni A, Hamby D (2007) A system for simultaneous beta and gamma spectroscopy. Nucl Instrum Meth Phys Res Sect A 578:528–536. doi: 10.1016/j.nima.2007.06.020 CrossRefGoogle Scholar
  120. 120.
    Farsoni AT, Alemayehu B, Alhawsawi A, Becker EM (2013) A phoswich detector with Compton suppression capability for radioxenon measurements. IEEE Trans Nucl Sci 60:456–464. doi: 10.1109/TNS.2012.2226606 CrossRefGoogle Scholar
  121. 121.
    Farsoni A, Alemayehu B, Alhawsawi A, Becker E (2013) Real-time pulse-shape discrimination and beta–gamma coincidence detection in field-programmable gate array. Nucl Instrum Meth Phys Res Sect A 712:75–82. doi: 10.1016/j.nima.2013.02.003 CrossRefGoogle Scholar
  122. 122.
    Alemayehu B, Farsoni AT, Ranjbar L, Becker EM (2014) A well-type phoswich detector for nuclear explosion monitoring. J Radioanal Nucl Chem 301:323–332. doi: 10.1007/s10967-014-3182-2 CrossRefGoogle Scholar
  123. 123.
    Le Petit G, Jutier C, Gross P, Greiner V (2006) Low-level activity measurement of 131Xem, 133Xem, 135Xe and 133Xe in atmospheric air samples using high-resolution dual x-gamma spectrometry. Appl Radiat Isot 64:1307–1312. doi: 10.1016/j.apradiso.2006.02.094 CrossRefGoogle Scholar
  124. 124.
    CTBT Preparatory Commission (2003) User manual of radionuclide analysis and evaluation software AatamiGoogle Scholar
  125. 125.
    Reeder P, Bowyer T, McIntyre J et al (2004) Gain calibration of a beta/gamma coincidence spectrometer for automated radioxenon analysis. Nucl Instrum Meth Phys Res Sect A 521:586–599. doi: 10.1016/j.nima.2003.11.195 CrossRefGoogle Scholar
  126. 126.
    Khrustalev K, Wieslander J, Auer M, Gheddou A (2016) Calibration of low-level beta–gamma coincidence detector systems for xenon isotope detection. Appl Radiat Isot 109:418–424. doi: 10.1016/j.apradiso.2015.11.032 CrossRefGoogle Scholar
  127. 127.
    Cooper MW, Ely JH, Haas DA et al (2013) Absolute efficiency calibration of a beta–gamma detector. IEEE Trans Nucl Sci 60:676–680. doi: 10.1109/TNS.2013.2243165 CrossRefGoogle Scholar
  128. 128.
    McIntyre JI, Cooper M, Ely J et al (2013) Further developments of a robust absolute calibration method utilizing beta/gamma coincidence techniques. J Radioanal Nucl Chem 296:693–698. doi: 10.1007/s10967-012-2112-4 CrossRefGoogle Scholar
  129. 129.
    Axelsson A, Ringbom A (2014) On the calculation of activity concentrations and nuclide ratios from measurements of atmospheric radioactivity. Appl Radiat Isot 92:12–17. doi: 10.1016/j.apradiso.2014.05.020 CrossRefGoogle Scholar
  130. 130.
    Lowrey JD, Biegalski SR (2012) Comparison of least-squares vs. maximum likelihood estimation for standard spectrum technique of β–γ coincidence spectrum analysis. Nucl Instrum Meth Phys Res Sect B 270:116–119. doi: 10.1016/j.nimb.2011.09.005 CrossRefGoogle Scholar
  131. 131.
    Biegalski S, Flory A, Haas D et al (2013) SDAT implementation for the analysis of radioxenon β–γ coincidence spectra. J Radioanal Nucl Chem 296:471–476. doi: 10.1007/s10967-012-2170-7 CrossRefGoogle Scholar
  132. 132.
    Deshmukh N, Prinke A, Miller B, McIntyre J (2017) Comparison of new and existing algorithms for the analysis of 2D radioxenon beta gamma spectra. J Radioanal Nucl Chem 311:1849–1857. doi: 10.1007/s10967-017-5174-5 CrossRefGoogle Scholar
  133. 133.
    Bläckberg L, Fay A, Jogi I et al (2011) Investigations of surface coatings to reduce memory effect in plastic scintillator detectors used for radioxenon detection. Nucl Instrum Meth Phys Res Sect A 656:84–91. doi: 10.1016/j.nima.2011.07.038 CrossRefGoogle Scholar
  134. 134.
    Seifert C, McIntyre JI, Antolick KC et al (2005) Mitigation of memory effects in beta scintillation cells for radioactive gas detection. In: 27th Seismic research review: ground-based nuclear explosion monitoring technologiesGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  • Ciara B. Sivels
    • 1
  • Justin I. McIntyre
    • 2
  • Theodore W. Bowyer
    • 2
  • Martin B. Kalinowski
    • 3
  • Sara A. Pozzi
    • 1
  1. 1.Nuclear Engineering and Radiological SciencesUniversity of MichiganAnn ArborUSA
  2. 2.Pacific Northwest National LaboratoryRichlandUSA
  3. 3.Scientific Methods UnitCTBTO/IDC/SA/SMViennaAustria

Personalised recommendations