Journal of Radioanalytical and Nuclear Chemistry

, Volume 314, Issue 2, pp 1169–1176 | Cite as

Treatment of radioactive spent extraction solvent by supercritical water oxidation

  • Qiang Qin
  • Shuai Wang
  • Hongyu Wang
  • Hongjun Ma
  • Kun Chen
  • Yanbo Qiao
  • Liubin He
  • Zhenghua Qian
  • Xueyang Liu
  • Zheng Li
  • Xiaobin Xia
Article
  • 86 Downloads

Abstract

Radioactive spent extraction solvent was treated by supercritical water oxidation. In this work, influences of reaction conditions on total organic carbon (TOC) removal, the volume percentage of CO2 yielded, and the distributions of radionuclides in gas, liquid and solid phase have been investigated. The results show that the TOC removal and the volume percentage of CO2 would be increased up to above 99% under optimal conditions. More than 88% of thorium and 67% of uranium were precipitated in solid phase, the rest remained in the liquid effluent, and no thorium and uranium were detected in gas phase.

Keywords

Supercritical water oxidation Distribution Spent extraction solvent Radionuclide 

Notes

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 21507143) and “Strategic Priority Research Program” of the Chinese Academy of Sciences (XDA02050000).

References

  1. 1.
    Zhang W, Li J, Wang J (2015) Solidification of spent radioactive organic solvent by sulfoaluminate and Portland cements. J Nucl Sci Technol 52(11):1362–1368CrossRefGoogle Scholar
  2. 2.
    Predisposal Management of Organic Radioactive Waste (2004) Technical reports series no. 427. International atomic energy agency, ViennaGoogle Scholar
  3. 3.
    Codée HD, Berntsen MTB, Hengst J, Lagerwerf H (2000) Incineration of radioactive organic liquids; five years of experience in The Netherlands. In: International Conference on Incineration, PortlandGoogle Scholar
  4. 4.
    Aki SN, Abraham MA (1998) An economic evaluation of catalytic supercritical water oxidation: comparison with alternative waste treatment technologies. Environ Prog 17(4):246–255CrossRefGoogle Scholar
  5. 5.
    Yan R, Liang DT, Laursen K, Li Y, Tsen L, Tay JH (2003) Formation of bed agglomeration in a fluidized multi-waste incinerator. Fuel 82(7):843–851CrossRefGoogle Scholar
  6. 6.
    Fulian XUE (2007) Analysis of corrosion reason of incinerator body. Surf Technol 36(3):78–79Google Scholar
  7. 7.
    Kovarik P, Navratil JD, John J (2015) Scientific and engineering literature mini review of molten salt oxidation for radioactive waste treatment and organic compound gasification as well as spent salt treatment. Sci Technol Nucl Install 2015:1–10CrossRefGoogle Scholar
  8. 8.
    Shin YH, Shin NC, Veriansyah B, Kim J, Lee Y-W (2009) Supercritical water oxidation of wastewater from acrylonitrile manufacturing plant. J Hazard Mater 163(2):1142–1147CrossRefGoogle Scholar
  9. 9.
    Söğüt OÖ, Akgün M (2007) Treatment of textile wastewater by SCWO in a tube reactor. J Supercrit Fluids 43(1):106–111CrossRefGoogle Scholar
  10. 10.
    Ma HH, Wang SZ, Zhou L, Ma SX, Fan J, Xu DH (2015) Kinetics analysis of heterogeneous oxidation of coal particles in supercritical water. Chem Eng Technol 38(1):91–100CrossRefGoogle Scholar
  11. 11.
    Loppinet-Serani A, Aymonier C, Cansell F (2010) Supercritical water for environmental technologies. J Chem Technol Biot 85(5):583–589CrossRefGoogle Scholar
  12. 12.
    Kim K, Son SH, Kim K, Han JH, Do Han K, Do SH (2010) Treatment of radioactive ionic exchange resins by super- and sub-critical water oxidation (SCWO). Nucl Eng Des 240(10):3654–3659CrossRefGoogle Scholar
  13. 13.
    Sugiyama W, Yamamura T, Park KC, Tomiyasu H, Shiokawa Y, Okada H, Sugita Y (2005) An extreme disposition method for low-level radioactive wastes using supercritical water (3). Prog Nucl Energ 47(1–4):448–453CrossRefGoogle Scholar
  14. 14.
    Li HX, Li C, Jiao CQ, Wang S (2015) Characterization of cerium dioxide nanoparticles prepared by supercritical water oxidation. Ceram Int 41(8):10170–10176CrossRefGoogle Scholar
  15. 15.
    Xu D, Huang C, Wang S, Lin G, Guo Y (2015) Salt deposition problems in supercritical water oxidation. Chem Eng J 279:1010–1022CrossRefGoogle Scholar
  16. 16.
    Wang S, Qin Q, Chen K, Xia X-B, Ma H-J, Qiao Y-B, He L-B (2015) Supercritical water oxidation of spent extraction solvent simulants. Nucl Sci Tech 26(3):113–119Google Scholar
  17. 17.
    Zhang J, Wang SZ, Guo Y, Xu DH, Gong YM, Tang XY (2013) Supercritical water oxidation of polyvinyl alcohol and desizing wastewater: influence of NaOH on the organic decomposition. J Environ Sci 25(8):1583–1591CrossRefGoogle Scholar
  18. 18.
    Akiya N, Savage PE (2002) Roles of water for chemical reactions in high-temperature water. Chem Rev 102(8):2725–2750CrossRefGoogle Scholar
  19. 19.
    Wang Y, Wang S, Guo Y, Xu D, Gong Y, Tang X, Ma H (2012) Oxidative degradation of lurgi coal-gasification wastewater with Mn2O3, CO2O3, and CuO Catalysts in supercritical water. Ind Eng Chem Res 51(51):16573–16579CrossRefGoogle Scholar
  20. 20.
    Hodes M, Marrone PA, Hong GT, Smith KA, Tester JW (2004) Salt precipitation and scale control in supercritical water oxidation—Part A: fundamentals and research. J Supercrit Fluid 29(3):265–288CrossRefGoogle Scholar
  21. 21.
    Li RK, Savage PE, Szmukler D (1993) 2-Chlorophenol oxidation in supercritical water: global kinetics and reaction-products. AIChE J 39(1):178–187CrossRefGoogle Scholar
  22. 22.
    Wang Y, Gao F, Yang J, Guo Y, Zhu Y, Zhao G, Fang C, Guo Y, Wang S, Guo N (2017) Partial oxidation kinetics of the mixture of acetic acid, phenol and naphthalene in supercritical water for hydrogen production. Int J Hydrog Energy 42(31):19843–19850CrossRefGoogle Scholar
  23. 23.
    Gong YM, Guo Y, Wang SZ, Song WH (2016) Supercritical water oxidation of quinazoline: effects of conversion parameters and reaction mechanism. Water Res 100:116–125CrossRefGoogle Scholar
  24. 24.
    Xu D, Wang S, Zhang F, Huang C, Tang X, Guo Y (2014) Current research status of salt deposition in supercritical water oxidation. Chem Ind Eng Prog 33(4):1015–1021,1029Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  1. 1.Center for Thorium Molten Salt Reactor System, Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghaiChina

Personalised recommendations