Journal of Radioanalytical and Nuclear Chemistry

, Volume 314, Issue 2, pp 1177–1181 | Cite as

Radiochemical purity and stability of 99mTc-HMPAO in routine preparations

  • Licia Uccelli
  • Petra Martini
  • Micol Pasquali
  • Alessandra Boschi
Article
  • 77 Downloads

Abstract

The aim of this work was to investigate the influence of pH, recovery volume, type of saline solution plastic or glass container, used to prepare the technetium-99m-d,l-hexamethylpropyleneamineoxime ([99mTc]Tc-d,l-HMPAO] radiopharmaceutical starting from generator produced sodium pertechnetate in nuclear medicine routine preparations. We observed that, neither the container type, nor the pH of 0.9% NaCl, used for diluting the [99mTc]pertechnetate, influenced [99mTc]Tc-d,l-HMPAO radiochemical purity (RCP) and stability, that decreased proportionally with the final volume of the preparation. In particular, the RCP of 1 mL kits preparations, at 30 min was found to be less than 80%.

Keywords

Technetium-99m-d,l-hexamethylpropyleneamineoxime Radiolabeling Brain imaging Radiochemical purity Radiopharmaceuticals 

Notes

Acknowledgements

Products are furnished by Nuclear Medicine Unit of University Hospital of Ferrara.

Disclosures

We declare that we have not received funding, contracts or other forms of personal or institutional funding, with companies whose products are mentioned in the text.

References

  1. 1.
    Selivanova SV, Lavalleè E, Senta H et al (2017) Clinical trial using sodium pertechnetate 99mTc produced with medium-energy cyclotron: biodistribution and safety assessment in patients with abnormal thyroid function. J Nucl Med 58:791–798CrossRefGoogle Scholar
  2. 2.
    Boschi A, Cazzola E, Uccelli L et al (2012) Rhenium(V) and technetium(V) nitrido complexes with mixed tridentate π-donor and monodentate π-acceptor ligands. Inorg Chem 51:3130–3137CrossRefGoogle Scholar
  3. 3.
    Boschi A, Uccelli L, Pasquali M et al (2013) Mixed tridentate π-donor and monodentate π-acceptor ligands as chelating systems for rhenium-188 and technetium-99m nitride radiopharmaceuticals. Curr Radiopharm 6:137–145CrossRefGoogle Scholar
  4. 4.
    Chaplin SB, Oberle PA, McKenzie EH et al (1986) Regional cerebral uptake and retention of 99mTc-tetramethyl and pentamethyl-propylene amine-oxime chelates. Nucl Med Biol 13:261–267Google Scholar
  5. 5.
    Peters AM, Danpure HJ, Osman S et al (1986) Clinical experience with 99mTc-hexamethyl-propyleneamineoxime for labeling leukocytes imaging inflammation. Lancet 2:946–949CrossRefGoogle Scholar
  6. 6.
    Neirinckx RD, Canning LR, Piper IM et al (1987) Technetium-99m d,l-HM-PAO: a new radiopharmaceutical for SPECT imaging of regional cerebral blood perfusion. J Nucl Med 28:191–202Google Scholar
  7. 7.
    Neirinckx RD, Harrison RC, Forster AM et al (1987) A model for the in vivo behavior of Tc-99m d,l-HMPAO in man. J Nucl Med 28:559–563Google Scholar
  8. 8.
    GE Healthcare (2016) Ceretec technical leaflet. GE Healthcare, UKGoogle Scholar
  9. 9.
    De Vries EF, Roca M, Jamar F, Israel O, Signore A (2010) Guidelines for the labelling of leucocytes with 99mTc-HMPAO. Inflammation/Infection Taskgroup of the European Association of Nuclear Medicine. Eur J Nucl Med Mol Imaging 37:842–848CrossRefGoogle Scholar
  10. 10.
    Boschi A, Paquali M, Uccelli L, Duatti A (2007) Novel Tc-99m radiotracers for brain imaging. Braz Arch Biol Technol 50:37–44CrossRefGoogle Scholar
  11. 11.
    Ballinger J (1990) Preparation of Tc-99m HMPAO [comment on]. J Nucl Med 31:1892–1895Google Scholar
  12. 12.
    Seifert S, Muth O, Jantsch K, Johannsen B (1995) Radiochemical purity of Tc-99m HMPAO: critical parameters during kit preparation. Nucl Med Biol 22:1063–1069CrossRefGoogle Scholar
  13. 13.
    Weisner PS, Bower GR, Dollimore LA, Forster AM, Higley B, Storey AE (1993) A method for stabilising technetium-99m exametazime prepared from a commercial kit. Eur J Nucl Med 20:661–664CrossRefGoogle Scholar
  14. 14.
    Chattopadhyay S, Das MK, Vanaja R, Ramamoorthy N (2001) Purification and stabilization of 99mTc-d,l-HMPAO: role of organic extractants. Nucl Med Biol 28:741–745CrossRefGoogle Scholar
  15. 15.
    Solanki C, Wraight EP, Barber RW, Sampson SB (1998) Seven-hour stabilization of 99mTc-exametazime (HMPAO) for cerebral perfusion. Nucl Med Commun 19:567–570CrossRefGoogle Scholar
  16. 16.
    Chuang MH, Tsao WL, Wang YF (2003) Comparison of the stabilization of Tc-99m HMPAO in different salicylate preparations. Tzu Chi Med J 15:363–366Google Scholar
  17. 17.
    Pastor F, Leiva L, Martinez MT, Fuente T (2006) Modificación del procedimiento de marcaje de Tc-99m exametazima y su influencia sobre la estabilidad de la preparación. Rev Esp Med Nucl 25:29–32Google Scholar
  18. 18.
    García Seguí V, Roca Engroñat M, Armero Muñoz M et al (1998) Stabilization of 99mTc-HMPAO with methylene blue: its use in leukocyte labelling). Rev Esp Med Nucl 17:261–265Google Scholar
  19. 19.
    Billinghurst MW, Abrams DN, Lawson MS (1991) Stabilization of [99mTc]HMPAO-ethanolic preparation. Int J Radiat Appl Instrum 42:607–611CrossRefGoogle Scholar
  20. 20.
    Grüning T, Franke WG (2001) Are leukocytes labelled with stabilized Tc-99m-HMPAO becoming activated during labelling? J Nucl Med 42:685–689Google Scholar
  21. 21.
    Martinez T, Miñana E, Martín-Falquina TC, Fuente T (2014) Influence of radiolytic-produced hydrogen peroxide on the stability of commercial kit 99mtechnetium-exametazime preparation. J Label Compd Radiopharm 57:49–52CrossRefGoogle Scholar
  22. 22.
    Craig F, Beatti LA, O’Brein LM, Millar AM (2009) Preparation of 99mTc radiopharmaceuticals: the effect on radiochemical purity of using sodium chloride injection from plastic ampoules that have been exposed to light. Nucl Med Commun 30:868–871CrossRefGoogle Scholar
  23. 23.
    Hung CY, Corlija M, Volkert A, Holmes RA (1988) Kinetic analysis of Tc-99m-d,l-HM-PAO decomposition in aqueous media. J Nucl Med 29:1568–1576Google Scholar
  24. 24.
    Ramamoorthy N, Pillai MRA, Troutner DE (1993) Studies on some aspects of the instability of 99mTc-hexamethylpropylene amine oxime (99mTc-HMPAO). Nucl Med Biol 20:307–310CrossRefGoogle Scholar
  25. 25.
    Esposito J, Vecchi G, Pupillo G, Taibi A, Uccelli L, Boschi A, Gambaccini M (2013) Evaluation of 99Mo and 99mTc productions based on a high-performance cyclotron. Sci Technol Nucl Install. Article ID 972381Google Scholar
  26. 26.
    Martini P, Boschi A, Cicoria G, Uccelli L, Pasquali M, Duatti A, Pupillo G, Marengo M, Loriggiola M, Esposito J (2016) A solvent-extraction module for cyclotron production of high-purity technetium-99m. Appl Radiat Isot 118:302–307CrossRefGoogle Scholar
  27. 27.
    Uccelli L, Boschi A, Pasquali M et al (2013) Influence of the generator in-growth time on the final radiochemical purity and stability of radiopharmaceuticals. Sci Technol Nucl Install. Article ID 379283. ISSN 1687-6083Google Scholar
  28. 28.
    Jinming Z, Jiahe T, Qiongfang L et al (1996) Kinetic analysis of 99mTc-d,l-HMPAO decomposition and the method of stabilisation. J Radioanal Nucl Chem 206:85–89CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  1. 1.Morphology, Surgery and Experimental Medicine DepartmentUniversity of FerraraFerraraItaly
  2. 2.Physics and Heart Science DepartmentUniversity of FerraraFerraraItaly
  3. 3.Legnaro National LaboratoriesItalian National Institute for Nuclear Physics (LNL-INFN)LegnaroItaly

Personalised recommendations