Journal of Radioanalytical and Nuclear Chemistry

, Volume 314, Issue 1, pp 521–527 | Cite as

Low-cost production of a 7Be tracer from rainwater and purification: preliminary results

  • Rebecca Querfeld
  • Silke Merchel
  • Georg Steinhauser


7Be with its relatively short half-life (53.22 days) is a possibly suitable radionuclide for radiotracer experiments. Low-level activities of natural 7Be can be found in rainwater and might be available as a tracer after radiochemical isolation. Herein, beryllium was first concentrated by evaporation of rainwater and/or iron(III) hydroxide co-precipitation. Afterwards, several separation schemes have been tested including various ion exchange resins in order to remove interfering other elements. Characterization was done by gamma spectrometry and inductively coupled plasma atomic emission spectrometry, respectively. With further optimizations of our methodology, rainwater may become a suitable low-cost and easily accessible 7Be tracer source.


7Be Tracer Gamma spectrometry Actinide resin LN resin Diphonix resin DOWEX 



We thank Georg Rugel, Andreas Scharf, Collin Tiessen and René Ziegenrücker for their support in this study.


  1. 1.
    Webber WR, Higbie PR, McCracken KG (2007) Production of the cosmogenic isotopes 3H, 7Be, 10Be, and 36Cl in the Earth’s atmosphere by solar and galactic cosmic rays. J. Geophys. Res. doi: 10.1029/2007JA012499 Google Scholar
  2. 2.
    Gosse JC, Phillips FM (2001) Terrestrial in situ cosmogenic nuclides: theory and application. Quat Sci Rev 20(14):1475–1560. doi: 10.1016/S0277-3791(00)00171-2 CrossRefGoogle Scholar
  3. 3.
    Korschinek G et al (2010) A new value for the half-life of 10Be by heavy-ion elastic recoil detection and liquid scintillation counting. Nucl Instrum Methods Phys Res Sect B 268(2):187–191. doi: 10.1016/j.nimb.2009.09.020 CrossRefGoogle Scholar
  4. 4.
    Brown ET et al (1991) Examination of surface exposure ages of Antarctic moraines using in situ produced 10Be and 26Al. Geochim Cosmochim Acta 55(8):2269–2283. doi: 10.1016/0016-7037(91)90103-C CrossRefGoogle Scholar
  5. 5.
    Merchel S, Herpers U (1999) An update on radiochemical separation techniques for the determination of long-lived radionuclides via accelerator mass spectrometry. Radiochim Acta. doi: 10.1524/ract.1999.84.4.215 Google Scholar
  6. 6.
    Livechart (2017) Table of nuclides—nuclear structure and decay data. Accessed 31 May 2017
  7. 7.
    Parker PD (1966) Be7(p,γ)B8 reaction. Phys Rev 150(3):851–856. doi: 10.1103/PhysRev.150.851 CrossRefGoogle Scholar
  8. 8.
    Legrand M et al (2017) Year-round record of bulk and size-segregated aerosol composition in central Antarctica (Concordia site) Part 2: biogenic sulfur (sulfate and methanesulfonate) aerosol. Atmos Chem Phys Discuss. doi: 10.5194/acp-2017-305 Google Scholar
  9. 9.
    Burnett JL, Davies AV (2014) 7Be activity at comprehensive nuclear-test-ban treaty stations hosted by the United Kingdom. J Radioanal Nucl Chem 301(2):523–528. doi: 10.1007/s10967-014-3122-1 CrossRefGoogle Scholar
  10. 10.
    Steinhauser G et al (2013) Artificial radioactivity in environmental media (air, rainwater, soil, vegetation) in Austria after the Fukushima nuclear accident. Environ Sci Pollut Res Int 20(4):2527–2534. doi: 10.1007/s11356-012-1140-5 CrossRefGoogle Scholar
  11. 11.
    Masson O et al (2011) Tracking of airborne radionuclides from the damaged Fukushima Dai-ichi nuclear reactors by European networks. Environ Sci Technol 45(18):7670–7677. doi: 10.1021/es2017158 CrossRefGoogle Scholar
  12. 12.
    Pinto VM et al (2013) Spatial variability of 7Be fallout for erosion evaluation. Radiat Phys Chem 83:1–7. doi: 10.1016/j.radphyschem.2012.09.020 CrossRefGoogle Scholar
  13. 13.
    Yoon YY et al (2016) Seasonal variation of 7Be and 3H in Korean ambient air and rain. J Radioanal Nucl Chem 307(3):1629–1633. doi: 10.1007/s10967-015-4340-x CrossRefGoogle Scholar
  14. 14.
    Uhlář R, Količová P, Alexa P (2015) Short-term variations in 7Be wet deposition in the eastern part of the Czech Republic. J Radioanal Nucl Chem 304(1):89–93. doi: 10.1007/s10967-014-3647-3 CrossRefGoogle Scholar
  15. 15.
    Kim KJ, Choi Y, Yoon Y-Y (2016) Monitoring 7Be and tritium in rainwater in Daejeon, Korea and its significance. Appl Radiat Isot 109:470–473. doi: 10.1016/j.apradiso.2015.11.094 CrossRefGoogle Scholar
  16. 16.
    Horwitz EP, McAlister DR (2005) The separation of beryllium from selected elements using the Dipex® extraction chromatographic resin. Solvent Extr Ion Exch 23(5):611–629. doi: 10.1080/07366290500280789 CrossRefGoogle Scholar
  17. 17.
    Chiariza R et al (1997) Diphonix® resin: a review of its properties and applications. Sep Sci Technol 32(1–4):1–35. doi: 10.1080/01496399708003184 CrossRefGoogle Scholar
  18. 18.
    Maxwell SL et al (2008) New method for removal of spectral interferences for beryllium assay using inductively coupled plasma atomic emission spectrometry. Talanta 76(2):432–440. doi: 10.1016/j.talanta.2008.03.032 CrossRefGoogle Scholar
  19. 19.
    McAlister DR, Horwitz EP (2007) Characterization of extraction of chromatographic materials containing Bis(2-ethyl-1-hexyl)phosphoric acid, 2-ethyl-1-hexyl (2-ethyl-1-hexyl) phosphonic acid, and bis(2,4,4-trimethyl-1-pentyl)phosphinic acid. Solvent Extr Ion Exch 25(6):757–769. doi: 10.1080/07366290701634594 CrossRefGoogle Scholar
  20. 20.
    Akhmadaliev S et al (2013) The new 6 MV AMS-facility DREAMS at Dresden. Nucl Instrum Methods Phys Res Sect B 294:5–10. doi: 10.1016/j.nimb.2012.01.053 CrossRefGoogle Scholar
  21. 21.
    Jander G, Blasius E (1995) Lehrbuch der analytischen und präparativen anorganischen Chemie: Mit 45 Tabellen, 14, neu, bearb edn. Hirzel, StuttgartGoogle Scholar
  22. 22.
    Becker HGO et al (2001) Organikum: Organisch-chemisches Grundpraktikum, 21., neu bearbeitete und erweiterte Auflage. Wiley-VCH, Weinheim, New York, Chichester, [etc.]Google Scholar
  23. 23.
    Wan GJ et al (2008) Analyses of 210Pb concentrations in surface air and in rain water at the central Guizhou, China. Tellus B Chem Phys Meteorol 60(1):32–41. doi: 10.1111/j.1600-0889.2007.00316.x CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  • Rebecca Querfeld
    • 1
  • Silke Merchel
    • 2
  • Georg Steinhauser
    • 1
  1. 1.Institute of Radioecology and Radiation ProtectionLeibniz Universität HannoverHannoverGermany
  2. 2.Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource TechnologyDresdenGermany

Personalised recommendations