Journal of Radioanalytical and Nuclear Chemistry

, Volume 313, Issue 2, pp 409–418 | Cite as

Mapping short-lived radium isotopes in estuarine residential canals (Gold Coast, Australia)

  • Paul A. Macklin
  • Isaac R. Santos
  • Damien T. Maher
  • Christian J. Sanders


Distributions of short-lived radium isotopes (224Ra and 223Ra) were investigated on the Gold Coast waterways, one of the largest residential estuarine canal systems on Earth, in an attempt to estimate radium-derived residence times and obtain insights into sources of radium isotopes. Surface and bottom canal waters were sampled in 61 locations over ~300 km of waterways. Radium isotope activities were 12-fold higher in groundwater than estuarine waters. Surprisingly, radium activities were usually higher in surface waters than bottom waters implying a radium source associated with tidal pumping in artificial beach sediments. Estimated radium ages were usually younger within artificial canal surface waters than in the natural estuarine waterways. This study shows that the tidally driven groundwater radium source can be enhanced by the extended canal shoreline.


Radium Residence times Residential canal estates Submarine groundwater discharge 



Jackie Webb, Jennifer Taylor, Luciana Sanders, Ben Stewart, Mitchell Call, Paul Kelly and Mahmood Sadat-Noori helped with field investigations. A Grant from the WH Gladstones Population and Environment Fund from the Australian Academy of Sciences and the Australian Research Council (DP120101645) provided funding for field work, while the Australian Research Council (LE120100156) funded instrumentation. IRS, DTM and CJS were supported by the Australian Research Council (DE140101733, DE150100581 and DE160100443). We thank the Gold Coast City Council and Nathan Waltham for advice during the design stage.

Supplementary material

10967_2017_5331_MOESM1_ESM.docx (56 kb)
Supplementary material 1 (DOCX 56 kb)


  1. 1.
    Rama A, Moore WS (1996) Using the radium quartet for evaluating groundwater input and water exchange in salt marshes. Geochim Cosmochim Acta 60(23):4645–4652CrossRefGoogle Scholar
  2. 2.
    Luek JL, Beck AJ (2014) Radium budget of the York River Estuary (VA, USA) dominated by submarine groundwater discharge with a seasonally variable groundwater end-member. Mar Chem 165:55–65. doi: 10.1016/j.marchem.2014.08.001 CrossRefGoogle Scholar
  3. 3.
    Beck AJ, Dulaiova H, Cochran JK (2010) J Environ Radioact Spec Issue Radium Radon Isot Environ Tracers. doi: 10.1016/j.jenvrad.2010.04.013 Google Scholar
  4. 4.
    Moore WS, de Oliveira J (2008) Determination of residence time and mixing processes of the Ubatuba, Brazil, inner shelf waters using natural Ra isotopes. Estuar Coast Shelf Sci 76(3):512–521CrossRefGoogle Scholar
  5. 5.
    Hwang D-W, Kim G, Lee Y-W, Yang H-S (2005) Estimating submarine inputs of groundwater and nutrients to a coastal bay using radium isotopes. Mar Chem 96(1):61–71CrossRefGoogle Scholar
  6. 6.
    Moore WS (2006) The role of submarine groundwater discharge in coastal biogeochemistry. J Geochem Explor 88(1):389–393CrossRefGoogle Scholar
  7. 7.
    Moore WS (2000) Determining coastal mixing rates using radium isotopes. Cont Shelf Res 20(15):1993–2007CrossRefGoogle Scholar
  8. 8.
    Swarzenski PW, Reich C, Kroeger KD, Baskaran M (2007) Ra and Rn isotopes as natural tracers of submarine groundwater discharge in Tampa Bay, Florida. Mar Chem 104(1):69–84CrossRefGoogle Scholar
  9. 9.
    Stewart BT, Santos IR, Tait DR, Macklin PA, Maher DT (2015) Submarine groundwater discharge and associated fluxes of alkalinity and dissolved carbon into Moreton Bay (Australia) estimated via radium isotopes. Mar Chem 174:1–12CrossRefGoogle Scholar
  10. 10.
    Povinec PP, Burnett WC, Beck A, Bokuniewicz H, Charette M, Gonneea ME, Groening M, Ishitobi T, Kontar E, Kwong LLW (2012) Isotopic, geophysical and biogeochemical investigation of submarine groundwater discharge: IAEA–UNESCO intercomparison exercise at Mauritius Island. J Environ Radioact 104:24–45CrossRefGoogle Scholar
  11. 11.
    Peterson RN, Burnett WC, Taniguchi M, Chen J, Santos IR, Misra S (2008) Determination of transport rates in the Yellow River–Bohai Sea mixing zone via natural geochemical tracers. Cont Shelf Res 28(19):2700–2707CrossRefGoogle Scholar
  12. 12.
    Moore WS (2010) A reevaluation of submarine groundwater discharge along the southeastern coast of North America. Glob Biogeochem Cycles. doi: 10.1029/2009GB003747 Google Scholar
  13. 13.
    Webster IT, Hancock GJ, Murray AS (1994) Use of radium isotopes to examine pore-water exchange in an estuary. Limnol Oceanogr 39(8):1917–1927CrossRefGoogle Scholar
  14. 14.
    Liu L, Yi L, Cheng X, Tang G (2015) Distribution of 223 Ra and 224 Ra in the Bo Sea embayment in Tianjin and its implication of submarine groundwater discharge. J Environ Radioact 150:111–120CrossRefGoogle Scholar
  15. 15.
    Garcia-Orellana J, Cochran J, Bokuniewicz H, Yang S, Beck A (2010) Time-series sampling of 223 Ra and 224 Ra at the inlet to Great South Bay (New York): a strategy for characterizing the dominant terms in the Ra budget of the bay. J Environ Radioact 101(7):582–588CrossRefGoogle Scholar
  16. 16.
    Waltham NJ, Connolly RM (2011) Global extent and distribution of artificial, residential waterways in estuaries. Estuar Coast Shelf Sci 94(2):192–197CrossRefGoogle Scholar
  17. 17.
    Waltham NJ, Connolly RM (2007) Artificial waterway design affects fish assemblages in urban estuaries. J Fish Biol 71(6):1613–1629. doi: 10.1111/j.1095-8649.2007.01629.x CrossRefGoogle Scholar
  18. 18.
    Harvey N, Stocker L (2015) Coastal residential waterways, science and policy-making: the Australian experience. Estuar Coast Shelf Sci 155:A1–A13. doi: 10.1016/j.ecss.2014.12.019 CrossRefGoogle Scholar
  19. 19.
    Benfer N, King B, Lemckert CJ, Zigic S (2010) Modeling the effect of flow structure selection on residence time in an artificial canal system: case study. J Waterw Port Coast Ocean Eng 136(2):91–96CrossRefGoogle Scholar
  20. 20.
    Macklin PA, Maher DT, Santos IR (2014) Estuarine canal estate waters: hotspots of CO2 outgassing driven by enhanced groundwater discharge? Mar Chem 167:82–92. doi: 10.1016/j.marchem.2014.08.002 CrossRefGoogle Scholar
  21. 21.
    Department of Environment and Heritage Protection (2012) Queensland Government, WetlandInfo. Accessed 9 May 2017
  22. 22.
    Franks H (1971) A review of land use and Development in South Coastal Queensland. Queensland Department of Primary Industries, Division of Land UtilisationGoogle Scholar
  23. 23.
    Webster T, Lemckert C (2002) Sediment resuspension within a microtidal estuary/embayment and the implication to channel management. J Coast Res 36:753–759Google Scholar
  24. 24.
    Lee SY, Dunn RJK, Young RA, Connolly RM, Dale P, Dehayr R, Lemckert CJ, McKinnon S, Powell B, Teasdale P (2006) Impact of urbanization on coastal wetland structure and function. Austral Ecol 31(2):149–163CrossRefGoogle Scholar
  25. 25.
    Benfer NP, King B, Lemckert CJ (2007) Salinity observations in a subtropical estuarine system on the Gold Coast, Australia. J Coast Res 50(646):e651Google Scholar
  26. 26.
    Zigic S, King B, Lemckert C (2005) Modelling the two-dimensional flow between an estuary and lake connected by a bi-directional hydraulic structure. Estuar Coast Shelf Sci 63(1):33–41CrossRefGoogle Scholar
  27. 27.
    Morton RM (1992) Fish assemblages in residential canal developments near the mouth of a subtropical Queensland estuary. Mar Freshw Res 43(6):1359–1371CrossRefGoogle Scholar
  28. 28.
    Australian Bureau of Meteorology (BOM) climate data online. Accessed 8 June 2013
  29. 29.
    Moore WS, Reid DF (1973) Extraction of radium from natural waters using manganese-impregnated acrylic fibers. J Geophys Res 78(36):8880–8886CrossRefGoogle Scholar
  30. 30.
    De Weys J, Santos IR, Eyre BD (2011) Linking groundwater discharge to severe estuarine acidification during a flood in a modified wetland. Environ Sci Technol 45(8):3310–3316CrossRefGoogle Scholar
  31. 31.
    Schmidt C, Hanfland C, Regnier P, Van Cappellen P, Schlüter M, Knauthe U, Stimac I, Geibert W (2011) 228Ra, 226Ra, 224Ra and 223Ra in potential sources and sinks of land-derived material in the German Bight of the North Sea: implications for the use of radium as a tracer. Geo-Mar Lett 31(4):259–269CrossRefGoogle Scholar
  32. 32.
    Moore WS, Arnold R (1996) Measurement of 223Ra and 224Ra in coastal waters using a delayed coincidence counter. J Geophys Res Oceans 101(C1):1321–1329CrossRefGoogle Scholar
  33. 33.
    Garcia-Solsona E, Garcia-Orellana J, Masqué P, Dulaiova H (2008) Uncertainties associated with 223 Ra and 224 Ra measurements in water via a Delayed Coincidence Counter (RaDeCC). Mar Chem 109(3):198–219CrossRefGoogle Scholar
  34. 34.
    Waska H, Kim S, Kim G, Peterson RN, Burnett WC (2008) An efficient and simple method for measuring 226 Ra using the scintillation cell in a delayed coincidence counting system (RaDeCC). J Environ Radioact 99(12):1859–1862CrossRefGoogle Scholar
  35. 35.
    Dimova N, Dulaiova H, Kim G, Burnett W (2008) Uncertainties in the preparation of 224 Ra Mn fiber standards. Mar Chem 109(3):220–225CrossRefGoogle Scholar
  36. 36.
    Eller KT, Burnett WC, Fitzhugh LM, Chanton JP (2014) Radium sampling methods and residence times in St. Andrew Bay, Florida. Estuar Coasts 37(1):94–103CrossRefGoogle Scholar
  37. 37.
    Burnett WC, Peterson R, Moore WS, de Oliveira J (2008) Radon and radium isotopes as tracers of submarine groundwater discharge—results from the Ubatuba, Brazil SGD assessment intercomparison. Estuar Coast Shelf Sci 76(3):501–511CrossRefGoogle Scholar
  38. 38.
    Dulaiova H, Burnett WC (2008) Evaluation of the flushing rates of Apalachicola Bay, Florida via natural geochemical tracers. Mar Chem 109(3):395–408CrossRefGoogle Scholar
  39. 39.
    Tomasky-Holmes G, Valiela I, Charette MA (2013) Determination of water mass ages using radium isotopes as tracers: implications for phytoplankton dynamics in estuaries. Mar Chem 156:18–26. doi: 10.1016/j.marchem.2013.02.002 CrossRefGoogle Scholar
  40. 40.
    Dulaiova H, Burnett WC (2008) Evaluation of the flushing rates of Apalachicola Bay, Florida via natural geochemical tracers. Mar Chem 109(3–4):395–408CrossRefGoogle Scholar
  41. 41.
    Knee KL, Garcia-Solsona E, Garcia-Orellana J, Boehm AB, Paytan A (2011) Using radium isotopes to characterize water ages and coastal mixing rates: a sensitivity analysis. Limnol Oceanogr Methods 9:380–395CrossRefGoogle Scholar
  42. 42.
    Cho HM, Kim G (2016) Determining groundwater Ra end-member values for the estimation of the magnitude of submarine groundwater discharge using Ra isotope tracers. Geophys Res Lett 43(8):3865–3871CrossRefGoogle Scholar
  43. 43.
    Moore WS, DeMaster DJ, Smoak JM, McKee BA, Swarzenski PW (1996) Radionuclide tracers of sediment–water interactions on the Amazon shelf. Cont Shelf Res 16(5):645–665CrossRefGoogle Scholar
  44. 44.
    Swarzenski P (2007) U/Th series radionuclides as coastal groundwater tracers. Chem Rev 107(2):663–674CrossRefGoogle Scholar
  45. 45.
    Garcia-Orellana J, Cochran J, Bokuniewicz H, Daniel J, Rodellas V, Heilbrun C (2014) Evaluation of 224 Ra as a tracer for submarine groundwater discharge in Long Island Sound (NY). Geochim Cosmochim Acta 141:314–330CrossRefGoogle Scholar
  46. 46.
    Beck AJ, Rapaglia JP, Cochran JK, Bokuniewicz HJ, Yang S (2008) Submarine groundwater discharge to Great South Bay, NY, estimated using Ra isotopes. Mar Chem 109(3):279–291CrossRefGoogle Scholar
  47. 47.
    Sadat-Noori M, Santos IR, Sanders CJ, Sanders LM, Maher DT (2015) Groundwater discharge into an estuary using spatially distributed radon time series and radium isotopes. J Hydrol 528:703–719CrossRefGoogle Scholar
  48. 48.
    Gleeson J, Santos IR, Maher DT, Golsby-Smith L (2013) Groundwater–surface water exchange in a mangrove tidal creek: evidence from natural geochemical tracers and implications for nutrient budgets. Mar Chem 156:27–37CrossRefGoogle Scholar
  49. 49.
    Charette MA, Buesseler KO, Andrews JE (2001) Utility of radium isotopes for evaluating the input and transport of groundwater-derived nitrogen to a Cape Cod Estuary. Limnol Oceanogr 46(2):465–470CrossRefGoogle Scholar
  50. 50.
    Santos IR, Bryan KR, Pilditch CA, Tait DR (2014) Influence of porewater exchange on nutrient dynamics in two New Zealand estuarine intertidal flats. Mar Chem 167:57–70CrossRefGoogle Scholar
  51. 51.
    Waltham NJ, Teasdale PR, Connolly RM (2011) Contaminants in water, sediment and fish biomonitor species from natural and artificial estuarine habitats along the urbanized Gold Coast, Queensland. J Environ Monit 13(12):3409–3419CrossRefGoogle Scholar
  52. 52.
    Department of Environment and Heritage Protection (2012) Queensland Government, WetlandInfo. Accessed 10 May 2017
  53. 53.
    Cardwell RD, Richey EP, Nece RE (1980) Fish, flushing, and water quality: their roles in marina design. In: Coastal zone ’80. ASCE, p 84–103Google Scholar
  54. 54.
    Goodwin CR (1991) Simulation of the effects of proposed tide gates on circulation, flushing, and water quality in residential canals, Cape Coral, Florida. US Geological SurveyGoogle Scholar
  55. 55.
    Chedzey L, Brown S, Ivey G, Imberger J (1992) Gravitational flow in a canal estate. Trans Inst Eng Aust Civ Eng 34(1):79–86Google Scholar
  56. 56.
    Balfour A, Bost M, Cook C, Couper L, Ellis P, English M, Gooding E, Housego R, Kaufmann R, Posey S Water quality in the Pine Knoll Shores Residential Canal SystemGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  • Paul A. Macklin
    • 1
    • 2
  • Isaac R. Santos
    • 1
    • 2
  • Damien T. Maher
    • 1
    • 2
  • Christian J. Sanders
    • 1
  1. 1.National Marine Science CentreSouthern Cross UniversityCoffs HarbourAustralia
  2. 2.School of Environment, Science and EngineeringSouthern Cross UniversityLismoreAustralia

Personalised recommendations