Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 313, Issue 2, pp 343–351 | Cite as

Radiometric analysis of 90Sr in fish bone ash samples by liquid scintillation counting after separation by extraction chromatographic resin

  • T. MiuraEmail author
  • Y. Minai
Article

Abstract

A simple analytical method was developed for the determination of 90Sr in fish bone ash samples. The adsorption behaviors of 26 metal ions on Sr Resin and AnaLig Sr-01 resin were examined. The obtained distribution coefficients show that Sr Resin has suitable selectivity. The proposed method consists of co-precipitation with calcium phosphate and purification by Sr Resin. After ingrowth, 90Y was measured using a liquid scintillation counter. The proposed method was validated by radiometric analysis of 90Sr in certified reference materials. Finally, the proposed method was applied for interlaboratory comparison. The analytical results by proposed method showed acceptable z scores.

Keywords

Fukushima daiichi nuclear power plant accident 90Sr Fish bone Extraction chromatography Liquid scintillation counter Certified reference material 

Notes

Acknowledgements

This work was partly supported by the Japan Science and Technology Agency (JST) through the “Development of Systems and Technology for Advanced Measurement and Analysis” program.

References

  1. 1.
    Saito K, Tanihata I, Fujiwara M, Saito T, Shimoura S, Otsuka T, Onda Y, Hoshi M, Ikeuchi Y, Takahashi F, Kinouchi N, Saegusa J, Seki A, Takemiya H, Shibata T (2015) Detailed deposition density maps constructed by large-scale soil sampling for gamma-ray emitting radioactive nuclides from the Fukushima Dai-ichi Nuclear Power Plant accident. J Environ Radioact 139:308–319CrossRefGoogle Scholar
  2. 2.
    Nakanishi TM, Kobayashi NI, Tanoi K (2013) Radioactive cesium deposition on rice, wheat, peach tree and soil after nuclear accident in Fukushima. J Radioanal Nucl Chem 296:985–989CrossRefGoogle Scholar
  3. 3.
    Hamada N, Ogino H (2012) Food safety regulations: what we learned from the Fukushima nuclear accident. J Environ Radioact 111:83–99CrossRefGoogle Scholar
  4. 4.
    Ma´te´ B, Sobiech-Matura K, Altzitzoglou T (2015) Radionuclide monitoring in foodstuff: overview of the current implementation in the EU countries. J Radioanal Nucl Chem 303:2547–2552Google Scholar
  5. 5.
    Merz S, Shozugawa K, Steinhauser G (2016) Effective and ecological half-lives of 90Sr and 137Cs observed in wheat and rice in Japan. J Radioanal Nucl Chem 307:1807–1810CrossRefGoogle Scholar
  6. 6.
    Steinhauser G, Schauer V, Shozugawa K (2013) Concentration of strontium-90 at selected hot spots in Japan. PLoS ONE. doi: 10.1371/journal.pone.0057760 Google Scholar
  7. 7.
    Takagai Y, Furukawa M, Kameo Y, Suzuki K (2014) Sequential inductively coupled plasma quadrupole mass-spectrometric quantification of radioactive strontium-90 incorporating cascade separation steps for radioactive contamination rapid survey. Anal Methods 6:355–362CrossRefGoogle Scholar
  8. 8.
    Kavasi N, Sahoo SK, Sorimachi A, Tokonami S, Aono T, Yoshida S (2015) Measurement of 90Sr in soil samples affected by the Fukushima Daiichi Nuclear Power Plant accident. J Radioanal Nucl Chem 303:2565–2570Google Scholar
  9. 9.
    Sahoo SK, Kavasi N, Sorimachi A, Arae H, Tokonami S, Mietelski JW, Łokas E, Yoshida S (2016) Strontium-90 activity concentration in soil samples from the exclusion zone of the Fukushima daiichi nuclear power plant. Sci Rep. doi: 10.1038/srep23925 Google Scholar
  10. 10.
    Amano H, Sakamoto H, Shiga N, Suzuki K (2016) Method for rapid screening analysis of Sr-90 in edible plant samples collected near Fukushima, Japan. Appl Radiat Isot 112:131–135CrossRefGoogle Scholar
  11. 11.
    Nabeshi H, Tsutsumi T, Uekusa Y, Hachisuka A, Matsuda R, Teshima R (2015) Surveillance of strontium-90 in foods after the Fukushima Daiichi Nuclear Power Plant accident. Food Hyg Saf Sci 56:133–143CrossRefGoogle Scholar
  12. 12.
    Vajda N, Kim CK (2010) Determination of radiostrontium isotopes: a review of analytical methodology. Appl Radiat Isot 68:2306–2326CrossRefGoogle Scholar
  13. 13.
    Povinec PP, Hirose K, Aoyama M (2012) Radiostrontium in the western North Pacific: characteristics, behavior, and the Fukushima impact. Environ Sci Technol 46:10356–10363. doi: 10.1021/es301997c Google Scholar
  14. 14.
    Casacuberta N, Masqué P, Garcia-Orellana J, Garcia-Tenorio R, Buesseler KO (2013) 90Sr and 89Sr in seawater off Japan as a consequence of the Fukushima Dai-ichi nuclear accident. Biogeosciences 10:3649–3659. doi: 10.5194/bg-10-3649-2013 CrossRefGoogle Scholar
  15. 15.
    Castrillejo M, Casacuberta N, Breier CF, Pike SM, Masqué P, Buesseler KO (2016) Reassessment of 90Sr, 137Cs, and 134Cs in the coast off Japan derived from the Fukushima Dai-ichi Nuclear accident. Environ Sci Technol 50:173–180CrossRefGoogle Scholar
  16. 16.
    Merz S, Shozugawa K, Steinhauser G (2015) Analysis of Japanese radionuclide monitoring data of food before and after the Fukushima Nuclear accident. Environ Sci Technol 49:2875–2885CrossRefGoogle Scholar
  17. 17.
    Fujimoto K, Miki S, Kaeriyama H, Shigenobu Y, Takagi K, Ambe D, Ono T, Watanabe T, Morinaga K, Nakata K, Morita T (2015) Use of otolith for detecting strontium-90 in fish from the harbor of Fukushima Dai-ichi Nuclear Power Plant. Environ Sci Technol 49:7294–7301CrossRefGoogle Scholar
  18. 18.
    Miki S, Fujimoto K, Shigenobu Y, Ambe D, Kaeriyama H, Takagi K, Ono T, Watanabe T, Sugisaki H, Morita T (2017) Concentrations of 90Sr and 137Cs/90Sr activity ratios in marine fishes after the Fukushima Dai-ichi Nuclear Power Plant accident. Fish Oceanogr 26:221–233CrossRefGoogle Scholar
  19. 19.
    Karube Z, Inuzuka Y, Tanaka A, Kurishima K, Kihou N, Shibata Y (2016) Radiostrontium monitoring of bivalves from the Pacific coast of eastern Japan. Environ Sci Pollut Res 23:17095–17104CrossRefGoogle Scholar
  20. 20.
    Oikawa S, Watanabe T, Takata H, Suzuki C, Nakahara M, Misono J (2013) Long term temporal changes of 90Sr and 137Cs in seawater, bottom sediment and marine organism samples- from the Chernobyl accident to immediately after the Fukushima accident. Bunseki Kagaku 62:455–474CrossRefGoogle Scholar
  21. 21.
    MEXT (Ministry of Education, Culture, Sports, Science and Technology) (2003) Analysis method of radiostrontium. Japan Chemical Analysis Center, ChibaGoogle Scholar
  22. 22.
    International Organization for Standardization (2009) ISO 18589-5 measurement of radioactivity in the environment–soil–Part 5: measurement of strontium 90. ISO, Geneva, SwitzerlandGoogle Scholar
  23. 23.
    Horwitz EP, Dietz ML, Fisher DE (1991) Separation and preconcentration of strontium from biological, environmental, and nuclear waste samples by extraction chromatography using a crown ether. Anal Chem 63:522–525CrossRefGoogle Scholar
  24. 24.
    Maxwell SL, Culligan BK, Hutchison JB, Utsey RC, McAlister DR (2015) Rapid determination of 90Sr in seawater sample. J Radioanal Nucl Chem 303:709–717CrossRefGoogle Scholar
  25. 25.
    Maxwell SL, Culligan B, Hutchison JB, Utsey RC, Sudowe R, McAlister DR (2016) Rapid method to determine 89Sr/90Sr in large concrete samples. J Radioanal Nucl Chem 310:399–411CrossRefGoogle Scholar
  26. 26.
    Izatt RM, Bruening RL, Bruening ML, Tarbet BJ, Krakowiak KE, Bradshaw JS, Christensen JJ (1988) Removal and separation of metal-ions from aqueous-solutions using a silica-gel-bonded macrocycle system. Anal Chem 60:1825–1826CrossRefGoogle Scholar
  27. 27.
    Izatt RM, Bradshaw JS, Bruening BL (1996) Accomplishment of difficult chemical separations using solid phase extraction. Pure & Appl Chem. 68:1237–1241CrossRefGoogle Scholar
  28. 28.
    Izatt NE, Bruening RL, Krakowiak KE, Izatt SR (2000) Contributions of Professor Reed M. Izatt to molecular recognition technology: from laboratory to commercial application. Ind Eng Chem Res 39:3405–3411CrossRefGoogle Scholar
  29. 29.
    Kameo Y, Katayama A, Fujiwara A, Haraga T, Nakashima M (2007) Rapid determination of 89Sr and 90Sr in radioactive waste using Sr extraction disk and beta-ray spectrometer. J Radioanal Nucl Chem 274:71–78CrossRefGoogle Scholar
  30. 30.
    Ometáková J, Dulanská S, Mátel L, Remenec B (2011) A comparison of classical 90Sr separation methods with selective separation using molecular recognition technology products AnaLig® Sr-01 gel, 3 M Empore™ Strontium Rad Disk and extraction chromatography Sr Resin®. J Radioanal Nucl Chem 290:319–323CrossRefGoogle Scholar
  31. 31.
    AnaLig Data Sheet: Sr-01, IBC 10604.Rev1, IBC Advanced Technology, UtahGoogle Scholar
  32. 32.
    Furusho Y, Rahman IMM, Hasegawa H, Izatt NE (2016) In: Izatt RM (ed) Metal sustainability: global challenges, consequences, and prospects. Wiley, New YorkGoogle Scholar
  33. 33.
    Jerome SM, Inn KGW, Wätjen U, Lin Z (2015) Certified reference, intercomparison, performance evaluation and emergency preparedness exercise materials for radionuclides in food. J Radioanal Nucl Chem 303:1771–1777Google Scholar
  34. 34.
    Wätjen U, Altzitzoglou T, Ceccatelli A, Dikmen H, Emteborg H, Ferreux L, Frechou C, La Rosa J, Luca A, Moreno Y, Oropesa P, Pierre S, Schmiedel M, Spasova Y, Szántóa Z, Szücs L, Wershofen H, Yücel Ü (2012) Results of an international comparison for the determination of radionuclide activity in bilberry material. Appl Radiat Isot 70:1843–1849CrossRefGoogle Scholar
  35. 35.
    Minai Y, Miura T, Yonezawa C, Iwamoto H, Shibukawa M, Takagai Y, Furukawa M, Arakawa F, Okada Y, Kakita K, Kojima I, Hirai S (2016) Certified reference materials of agricultural products and foods bearing radioactivity from the Fukushima nuclear accident. J Radioanal Nucl Chem 307:2421–2426CrossRefGoogle Scholar
  36. 36.
    Development report of JSAC CRM 0784. http://www.jsac.or.jp/srm/RDJSAC0781.pdf. Accessed 19 Jan 2017
  37. 37.
    Broda R, Cassette P, Kossert K (2007) Radionuclide metrology using liquid scintillation counting. Metrologia 44:S36–S52CrossRefGoogle Scholar
  38. 38.
    Eikenberg J, Beer H, Jäggi M (2014) Determination of 210Pb and 226Ra/228Ra in continental water using HIDEX 300SL LS-spectrometer with TDCR efficiency tracing and optimized α/β-discrimination. Appl Radiat Isot 93:64–69CrossRefGoogle Scholar
  39. 39.
    Lin Z, Inn KGW, Altzitzoglou T, Arnold D, Cavadore D, Ham GJ, Korun M, Wershofen H, Takata Y, Young A (1998) Development of the NIST bone ash standard reference material for environmental radioactivity measurement. Appl Radiat Isot 49:1301–1306CrossRefGoogle Scholar
  40. 40.
    Pilviö R, LaRosa JJ, Mouchel D, Wordel R, Bickel M, Altzitzoglou T (1999) Measurement of low-level radioactivity in bone ash. J Environ Radioact 43:343–356CrossRefGoogle Scholar
  41. 41.
    Maxwell SL III, Faison DM (2008) Rapid column extraction method for actinides and strontium in fish and other animal tissue samples. J Radioanal Nucl Chem 275:605–612CrossRefGoogle Scholar
  42. 42.
    Horwitz EP, Chiarizia R, Dietz ML (1992) A novel strontium-selective extraction chromatographic resin. Solvent Extr Ion Exch 10:313–336CrossRefGoogle Scholar
  43. 43.
    Chikayama Y, Yagi Y, Shiono H, Watanabe A, Miyamoto T (1999) Accumulation of 90Sr to Cattle and Horse Bones in Hokkaido. Radioisotopes 48:283–287CrossRefGoogle Scholar
  44. 44.
    International Organization for Standardization (2015) ISO 13528:2015(E) Statistical methods for use in proficiency testing by interlaboratory comparison. ISO, Geneva, SwitzerlandGoogle Scholar
  45. 45.
    Currie LA (1968) Limits for qualitative detection and quantitative determination. Anal Chem 40:586–593CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  1. 1.National Metrology Institute of Japan, AISTTsukubaJapan
  2. 2.Musashi UniversityTokyoJapan

Personalised recommendations