Journal of Radioanalytical and Nuclear Chemistry

, Volume 313, Issue 3, pp 603–609 | Cite as

Spatial and temporal variations of radon concentrations in groundwater of hard rock aquifers in Madurai district, India

  • C. Thivya
  • S. Chidambaram
  • R. Thilagavathi
  • K. Tirumalesh
  • M. Nepolian
  • M. V. Prasanna


Radon (222Rn) and other radionuclides in groundwater can lead to health problems if present in higher concentrations. A study was carried out in Madurai district of Tamilnadu by collecting groundwater samples for four different seasons and aims to identify the regions with higher 222Rn concentration along with their spatial and seasonal variations. 222Rn has been compared with field parameters, log pCO2, major ions and uranium to detect the factors responsible for the higher concentration in groundwater. The weathering process induces the release of higher uranium ions from the granitic terrain from the rock matrix which enhances the 222Rn levels in groundwater.


Radon Lithology Weathering Uranium Lineaments 



The authors wish to express their sincere thanks to University Grants Commission (UGC), India for providing the necessary financial support to carry out this study with vide reference to UGC letter No. F: 39-143/2010 (SR) dated 27 December 2010.


  1. 1.
    Corbett CR, Burnett WC (1997) Radon tracing in groundwater input into Pad Pond, Sanannah River site. J Hydrol 203:209–227CrossRefGoogle Scholar
  2. 2.
    USEPA (1991) Review of RSC analysis. Report prepared by Wade Miller Associates, Inc. for the United States Environmental Protection AgencyGoogle Scholar
  3. 3.
    Voronov AN (2004) Radon-rich waters in Russia. Environ Geol 46:630CrossRefGoogle Scholar
  4. 4.
    Thivya C, Chidambaram S, Tirumalesh K, Prasanna MV, Thilagavathi R, Nepolian M (2014) Occurrence of the radionuclides in groundwater of crystalline hard rock regions of central Tamil Nadu, India. J Radio anal Nucl Chem 302:1349–1355CrossRefGoogle Scholar
  5. 5.
    Schmidt A, Schubert M (2007) Using radon-222 for tracing groundwater discharge into an open-pit lignite mining lake—a case study. Isot Environ Health Stud 43:387–400CrossRefGoogle Scholar
  6. 6.
    Darby S, Hill D, Auvinen A, Barros-dios JM, Bochicchio F, Deo H, Falk R, Forastiere F, Hakama M, Heid I, Keienbrock L, Kreuzer M, Lagarde F, Makelainen I, Muirhead C, Oberaigner W, Pershagen G, Ruano-Ravina A, Ruosteenoja E, Schaffrath Rosario A, Tirmarche M, Tomasek L, Whitley E, Wichmann HE, Doll R (2005) Radon in homes and risk of lung cancer: collaborative analysis of individual data from 13 european case-control studies. Br Med J 330:223–228CrossRefGoogle Scholar
  7. 7.
    Doi RJ, Przylibski TA, Kozłowska B, Dorda J, Kiełczawa B (2001) Radon-222 and 226Ra concentrations in mineralized groundwaters of Gorzanów (Kłodzko Basin, Sudeten mountains, SW Poland. J Radio Anal Nucl. Chem 253(1):11–19Google Scholar
  8. 8.
    Auvinen A, Salonen L, Pekkanen J, Pukkala E, Ilus T, Kurttio P (2005) Radon and other natural radionuclides in drinking water and risk of stomach cancer: a case–cohort study in Finland. Int J Cancer 114(1):109–113CrossRefGoogle Scholar
  9. 9.
    Akerblom G (1994) Radon in water in Swedish. Borrsvangen 94, pp. 16-21Google Scholar
  10. 10.
    Thivya C, Chidambaram S, Keesari Tirumalesh, Prasanna MV, Thilagavathi R, Adithya VS, Singaraja C (2015) Lithological and hydrochemical controls on distribution and speciation of uranium in groundwaters of hard-rock granitic aquifers of Madurai District, Tamil Nadu (India). Environ Geochem Health 37(3):497–509Google Scholar
  11. 11.
    Thivya C, Chidambaram S, Thilagavathi R, Prasanna MV, Singaraja C, Adithya VS, Nepolian M (2015) A multivariate statistical approach to identify the spatio-temporal variation of geochemical process in a hard rock aquifer. Environ Monit Assess 187:552CrossRefGoogle Scholar
  12. 12.
    GSI (Geological Survey of India) (1995) Geological and mineral map of Tamil Nadu and Pondicherry, 1:500,000Google Scholar
  13. 13.
    Thivya C, Chidambaram S, Singaraja C, Thilagavathi R, Prasanna MV, Jainab (2013) A study on the significance of lithology in groundwater quality of Madurai district, Tamil Nadu (India). Environ Dev Sustain 15:1365–1387CrossRefGoogle Scholar
  14. 14.
    CGWB (2007) Ground water resources and development prospects in Madurai regionGoogle Scholar
  15. 15.
    Ramesh R, Anbu M (1996) Chemical methods for environmental analysis- water and sediments. Chennai, Macmillan India, p 161Google Scholar
  16. 16.
    APHA (1995) Standard methods for the examination of water and waste water, 19th edn. APHA, USASS, Washington DCGoogle Scholar
  17. 17.
    Choubey VM, Bartarya SK, Ramola RC (2000) Radon in Himalayan springs: a geohydrological control. Environ Geol 39(6):523–530CrossRefGoogle Scholar
  18. 18.
    Nashine SK, Dhanraju R, Bhatnagar GR, Narayandas GR (1982) Uranium occurrences close to the main central thrust around Sileth, Dhargaon, Chamyala Balganga valley, Tehri Garhwal, UP. Himal Geol 1:305–316Google Scholar
  19. 19.
    Fleischer RL (1980) Isotopic disequilibrium of uranium alpha –recoil. Damage Preferential Solut Eff Sci 207:979–981Google Scholar
  20. 20.
    Olofsson B, Jacks G, Knutsson G, Thunvik R (2001) Groundwater in hard rock – a literature review In: Nuclear waste state of that the art report, Seish National Council for Nuclear waste SOU 2001:35 Stockholm, pp. 115–191Google Scholar
  21. 21.
    Skeppstrom K, Olofsson B (2007) Uranium and radon in groundwater. Eur Water 17(18):51–62Google Scholar
  22. 22.
    Kraemer T, Genereux D (1998) Application of uranium- and thorium series radionuclides in catchment hydrology studies. In: Kendall C, McDonnell J (eds) Isotope tracers in catchment hydrology. Elsevier, Amsterdam, pp 679–722CrossRefGoogle Scholar
  23. 23.
    Prasad Yogesh, Prasad Ganesh, Choubey VM, Ramola RC (2009) Geohydrological control on radon availability in groundwater. Radiat Meas 44:122–126CrossRefGoogle Scholar
  24. 24.
    Akerblom G, Lindgren J (1997) Mapping of groundwater radon potential. Eur Geol 5:13–22Google Scholar
  25. 25.
    Badhan Komal, Mehra Rohit, Sonkawade RG (2010) Measurement of radon concentration in groundwater using RAD7 and assessment of average annual dose in the environs of NITJ, Punjab India. Indian J Pure Appl Phys 48:508–511Google Scholar
  26. 26.
    Monnin M, Seidel JL (1992) Radon in soil – air and in groundwater related to major geophysical events A survey. Nucl Instrum Meth Phys Res A314:316–330CrossRefGoogle Scholar
  27. 27.
    Singh MRC, Ramola SS, Virk HS (1988) The influence of Metrological parameters on soil gas radon. J Assoc Explor Geophy 9:85–90Google Scholar
  28. 28.
    Sharma AK, Walia V, Virk HS (2000) Effects on Meterological parameters on radon emanations at palampur(H.P). J Geophys 21:45–48Google Scholar
  29. 29.
    Raymahashay BC (1986) Geochemistry of bicarbonate in river water. J Geol Soc India 27:114–118Google Scholar
  30. 30.
    Brutsaert WF, Norton SW, Hess CT, Williams JS (1981) Geologic and hydrologic factors controlling Radon-222 in ground water in Maine. Ground Water 19:407–417CrossRefGoogle Scholar
  31. 31.
    Donahue P M (1984) Hydrogeologic factors influencing Radon-222 in ground water in southeastern New Hampshire. Directed M.S. Report. University of New Hampshire, Durham, N.H. pp. 63Google Scholar
  32. 32.
    Francis C, Watkins J, Wilkinson RJ, Farmyards (1980) An overlooked source for highly contaminated runoff. J Environ Manag 87:551–559Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  • C. Thivya
    • 1
  • S. Chidambaram
    • 2
  • R. Thilagavathi
    • 2
  • K. Tirumalesh
    • 3
  • M. Nepolian
    • 2
  • M. V. Prasanna
    • 4
  1. 1.Department of GeologyUniversity of MadrasChennaiIndia
  2. 2.Department of Earth SciencesAnnamalai UniversityAnnamalai NagarIndia
  3. 3.Isotope Production and Applications DivisionBhabha Atomic Research CentreMumbaiIndia
  4. 4.Department of Applied Geology, Faculty of Engineering and ScienceCurtin UniversityMiriMalaysia

Personalised recommendations