Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 313, Issue 3, pp 555–563 | Cite as

Sorption studies of radionuclides on argillaceous clays of Cuddapah System

  • Madhuri A. Patel
  • Aishwarya S. Kar
  • Dimple Garg
  • Sumit Kumar
  • B. S. Tomar
  • R. K. Bajpai
Article
  • 157 Downloads

Abstract

Worldwide argillaceous clays are being studied as promising host rock for nuclear high level waste disposal. Cuddapah argillite is under evaluation for Indian clay rock based repository. Herein characterization of this clay and evaluation for its sorption characteristics towards Cs(I) and Eu(III) has been studied. Surface complexation modeling of Cs(I) sorption on argillaceous clay revealed that Cs(I) is sorbed on high as well as low affinity ion exchange sites. In modeling of Eu(III) sorption data, surface complexes of Eu(III) and europium carbonate species, along with ion exchange reaction, reproduced the sorption profile with ankerite dissolution influencing distribution of various surface complexes.

Keywords

Argillaceous clay Europium Cesium Sorption Surface complexation modeling Georepository 

Notes

Acknowledgements

The authors thank Dr. Balaji Mandal for XRD measurements and ascertaining mineralogical composition of argillaceous clays, Ms. Annapurna Chandane and Dr. S. Jeyakumar for Ca analysis.

References

  1. 1.
    Nagra project Opalinus clay: safety report (2002). Demonstration of disposal feasibility (Entsorgungsnachweis) for spent fuel, vitrified high-level waste and long-lived intermediate-level waste. Nagra Technical Report NTB 02-05. Nagra, WettingenGoogle Scholar
  2. 2.
    Lázár K, Máthé Z (2012) In: Valaskova M (ed) Claystone as a potential host rock for nuclear waste storage, clay minerals in nature—their characterization, modification and application. In Tech, Rijeka, p 55Google Scholar
  3. 3.
    Renauld V, Habrant N (2001) Andra Référentielgéologique du site de Meuse/Haute Marne. Rapp. A RP ADS99-005 de l’Agencenationale pour la gestion des déchetsradioactifs, Châtenay-MalabryGoogle Scholar
  4. 4.
    Ondraf (2001) SAFIR 2: safety assessment and feasibility interim report 2. NIROND-2001-06 E. Ondraf, BrusselsGoogle Scholar
  5. 5.
    Mell P, Megyeri J, Riess L, Máthé Z, Csicsák J, Lázár K (2006) Sorption of Co, Cs, Sr and I onto argillaceous rock as studied by radiotracers. J Radioanal Nucl Chem 268:405–410CrossRefGoogle Scholar
  6. 6.
    Mell P, Megyeri J, Riess L, Máthé Z, Csicsák J, Lázár K (2006) Sorption of Co, Cs, Sr and I onto argillaceous rock as studied by radiotracers. J Radioanal Nucl Chem 268:411–417CrossRefGoogle Scholar
  7. 7.
    Savoye S, Goutelard F, Beaucaire C, Charles Y, Fayette A, Herbette M, Larabi Y, Coelho D (2011) Effect of temperature on the containment properties of argillaceous rocks: the case study of Callovo-Oxfordian claystones. J Contam Hydrol 125:102–112CrossRefGoogle Scholar
  8. 8.
    Fernandes MM, Vér N, Baeyens B (2015) Predicting the uptake of Cs Co, Ni, Eu, Th and U on argillaceous rocks using sorption models for illite. Appl Geochem 59:189–199CrossRefGoogle Scholar
  9. 9.
    Bradbury MH, Baeyens B (2011) Predictive sorption modelling of Ni(II), Co(II), Eu(IIII), Th(IV) and U(VI) on MX-80 bentonite and Opalinus clay: a bottom-up approach. Appl Clay Sci 52:27–33CrossRefGoogle Scholar
  10. 10.
    Bradbury MH, Baeyens B (2000) A generalised sorption model for the concentration dependent uptake of caesium by argillaceous rocks. J Contam Hydrol 42:141–163CrossRefGoogle Scholar
  11. 11.
    Breitner D, Osan J, Fabian M, Zagyvai P, Szabo C, Dahn R, Fernandes MM, Sajo IE, Mathe Z, Torok S (2015) Characteristics of uranium uptake of Boda Claystone Formation as the candidate host rock of high level radioactive waste repository in Hungary. Environ Earth Sci 73:209–219CrossRefGoogle Scholar
  12. 12.
    Joseph C, Stockman M, Schmeide K, Sachs S, Brendler V, Geipel G, Bernhard G (2011) Sorption of uranium(VI) onto Opalinus clay in the absence and presence of humic acid in Opalinus clay pore water. Chem Geol 284:240–250CrossRefGoogle Scholar
  13. 13.
    Fröhlich DR, Amayri S, Drebert J, Reich T (2011) Sorption of neptunium(V) on Opalinus clay under aerobic/anaerobic conditions. Radiochim Acta 99:71–77CrossRefGoogle Scholar
  14. 14.
    Wu T, Amayri S, Drebert J, Vanloon L, Reich T (2009) Neptunium(V) sorption and diffusion in Opalinus clay. Environ Sci Technol 243:6567–6571CrossRefGoogle Scholar
  15. 15.
    Reich T, Amayri S, Börner PJB, Drebert J, Fröhlich DR, Grolimund D, Kaplan U (2016) Speciation of neptunium during sorption and diffusion in natural clay. J Phys Conf Ser 712:012081. doi: 10.1088/1742-6596/712/1/012081 CrossRefGoogle Scholar
  16. 16.
    Meier LP, Kahr G (1999) Determination of the cation exchange capacity (CEC) of clay minerals using the complexes of copper(II) ion with triethylenetetramine and tetraethylenepentamine. Clay Clay Miner 47:386–388CrossRefGoogle Scholar
  17. 17.
    Kumar S, Pente AS, Bajpai RK, Kaushik CP, Tomar BS (2013) Americium sorption on smectite-rich natural clay from granitic ground water. Appl Geochem 35:28–34CrossRefGoogle Scholar
  18. 18.
    Bradbury MH, Baeyens B (2002) Sorption of Eu on Na- and Ca–montmorillonite: experimental investigations and modelling with cation exchange and surface complexation. Geochim Cosmochim Acta 66:2325–2334CrossRefGoogle Scholar
  19. 19.
    Bradbury MH, Baeyens B (2006) Modelling sorption data for the actinides Am(III), Np(V) and Pa(V) on montmorillonite. Radiochim Acta 94:619–625CrossRefGoogle Scholar
  20. 20.
    Herbelin AL, Westall JC (1999) FITEQL, a computer program for determination of chemical equilibrium constant from experimental data. Department of Chemistry, Oregon State University, OregonGoogle Scholar
  21. 21.
    Grim RE (1953) Clay mineralogy. McGraw-Hill, New YorkGoogle Scholar
  22. 22.
    Zhang CL, Wieczorek K, Xie ML (2010) Swelling experiments on mudstones. J Rock Mech Geotech Eng 2:44–51CrossRefGoogle Scholar
  23. 23.
    Zhu X, Cai J, Song G, Ji J (2015) Factors influencing the specific surface areas of argillaceous source rocks. Appl Clay Sci 109–110:83–94CrossRefGoogle Scholar
  24. 24.
    Wenk HR, Voltolini M, Mazurek M, VanLoon LR, Vinsot A (2008) Preferred orientations and anisotropy in shales: callovo-oxfordian shale (France) and Opalinus clay (Switzerland). Clays Clay Miner 56:285–306CrossRefGoogle Scholar
  25. 25.
    Nadeau PH (1998) An experimental study of the effects of diagenetic clay minerals on reservoir sands. Clays Clay Miner 46:18–26CrossRefGoogle Scholar
  26. 26.
    Pearson FJ, Arcos D, Bath A, Boisson JY, Fernández AM, Gäbler, HE, Gaucher E, Gautschi A, Griffault L, Hernán P, Waber HN (2003) Mont Terri Project—geochemistry of water in the Opalinus clay formation at the Mont Terri Rock Laboratory, geology series no. 5, BernGoogle Scholar
  27. 27.
    Craen MD, Wang L, Van Geet M, Moors H (2004) Geochemistry of boom clay pore water at the Mol site, Scientific Report SCK·CEN-BLG-990, 04/MDC/P-48, BelgiumGoogle Scholar
  28. 28.
    Fedor F, Hámos G, Jobbik A, Máthé Z, Somodi G, Szucs I (2008) Laboratory pressure pulse decay permeability measurement of Boda Claystone, Mecsek Mts, SW Hungary. Phys Chem Earth 33:S45–S53CrossRefGoogle Scholar
  29. 29.
    Lujaniene G, Mazeika K, Sapolaite J, Amulevicius A, Motiejunas S (2006) Kinetics of Cs sorption to clay minerals. Lith J Phys 46:375–382CrossRefGoogle Scholar
  30. 30.
    Lujanienė G, Beneš P, Štamberg K, Ščiglo T (2012) Kinetics of plutonium and americium sorption to natural clay. J Environ Radioact 108:41–49CrossRefGoogle Scholar
  31. 31.
    Fuller AJ, Shaw S, Peacock CL, Trivedi D, Small JS, Abrahamsen LG, Burke IT (2014) Ionic strength and pH dependent multi-site sorption of Cs onto a micaceous aquifer sediment. Appl Geochem 40:32–42CrossRefGoogle Scholar
  32. 32.
    Kasar S, Kumar S, Bajpai RK, Tomar BS (2016) Diffusion of Na(I), Cs(I), Sr(II) and Eu(III) in smectite rich natural clay. J Environ Radioact 151:218–223CrossRefGoogle Scholar
  33. 33.
    Poinssot C, Baeyens B, Bradbury MH (1999) Experimental and modelling studies of caesium sorption on illite. Geochim Cosmochim Acta 63:3217–3227CrossRefGoogle Scholar
  34. 34.
    Bradbury MH, Baeyens B, Geckeis H, Rabung TH (2005) Sorption of Eu(III)/Cm(III) on Ca–montmorillonite and Na–illite. Part 2: surface complexation modeling. Geochim Cosmochim Acta 69:5403–5412CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  • Madhuri A. Patel
    • 1
  • Aishwarya S. Kar
    • 1
  • Dimple Garg
    • 3
  • Sumit Kumar
    • 1
  • B. S. Tomar
    • 1
  • R. K. Bajpai
    • 2
  1. 1.Radioanalytical Chemistry DivisionBhabha Atomic Research CentreMumbaiIndia
  2. 2.Technology Development DivisionBhabha Atomic Research CentreMumbaiIndia
  3. 3.School of Chemistry and BiochemistryThapar UniversityPatialaIndia

Personalised recommendations