Effect of coexisting cations on the adsorption of cesium onto poly (β-cyclodextrin)/bentonite composite

  • Hongjuan Liu
  • Shuibo XieEmail author
  • Tiancheng Wang
  • Yingjiu Liu
  • Taotao Zeng


A novel poly(β-cyclodextrin)/bentonite composite (β-CD/BNC) was successfully prepared through graft polymerisation by using ammonium persulphate–sodium bisulphate as initiators, and characterized by FT-IR and EDS. The equilibrium data fit Freundlich isotherm satisfactorily. Adsorption kinetic was fitted with pseudo-second-order. The maximum adsorption capacities for Cs+ by β-CD/BNC in absence and presence of Na+ and Mg2+ were 48.83 ± 0.35, 47.30 ± 0.28, and 42.52 ± 0.85 mg g−1, respectively. Adsorption of Cs+ was suppressed by presence of Mg2+ more than Na+. β-CD/BNC had a higher affinity to Cs+ than Na+ and Mg2+. β-CD/BNC was an effective sorbent for the treatment cesium waste water.


β-CD/BNC Bentonite Cs+ Coexistent cation Adsorption 



This work was supported by the Doctoral Fund of High Education Program (Grant No. 20134324110003), the National Natural Science Foundation of China (Grant No. 11475080), the General Program of the Hunan Provincial Education Department (Grant No. 15C1178), the Graduate Student Research Innovation Project of Hunan Province (CX2016B427).


  1. 1.
    Yang SB, Hanc C, Wang XK, Nagatsua M (2014) Characteristics of cesium ion sorption from aqueous solution on bentonite- and carbon nanotube-based composites. J Hazard Mater 274:46–52CrossRefGoogle Scholar
  2. 2.
    Sawidis T, Tsigaridas K, Tsikritzis L (2010) Cesium-137 monitoring using lichens from W. Macedonia, N. Greece. Ecotox Environ Safe 73(7):1789–1796CrossRefGoogle Scholar
  3. 3.
    Tateda Y, Tsumune D, Tsubono T (2013) Simulation of radioactive cesium transfer in the southern Fukushima coastal biota using a dynamic food chain transfer model. J Environ Radioact 124(5):1–12CrossRefGoogle Scholar
  4. 4.
    Tsumune D, Tsubono T, Aoyama M, Hirose K (2012) Distribution of oceanic 137Cs from the Fukushima Daiichi Nuclear Power Plant simulated numerically by a regional ocean model. J Environ Radioact 111:100–108CrossRefGoogle Scholar
  5. 5.
    Buesseler KO, Jayne SR, Fisher NS, Rypina I, Baumann H, Baumann Z (2012) Fukushima-derived radionuclides in the ocean and biota off Japan. Proc Natl Acad Sci USA 109:5984–5988CrossRefGoogle Scholar
  6. 6.
    Li TT, He F, Dai YD (2016) Prussian blue analog caged in chitosan surface-decorated carbon nanotubes for removal cesium and strontium. J Radioanal Nucl Chem 310(3):1139–1145CrossRefGoogle Scholar
  7. 7.
    Mao XY, Han FXX, Shao XH, Guo K, McComb J, Arslan Z, Zhang ZY (2016) Electro-kinetic remediation coupled with phytoremediation to remove lead, arsenic and cesium from contaminated paddy soil. Ecotox Environ Safe 125:16–24CrossRefGoogle Scholar
  8. 8.
    Dwivedi C, Kumar A, Ajish JK, Singh KK, Kumar M, Wattal PK, Bajaj PN (2012) Resorcinol–formaldehyde coated XAD resin beads for removal of cesium ions from radioactive waste: synthesis, sorption and kinetic studies. RSC Adv 2:5557–5564CrossRefGoogle Scholar
  9. 9.
    Endo M, Yoshikawa E, Muramatsu N, Takizawa N, Kawai T, Unuma H, Sasaki A, Masano A, Takeyama Y, Kahara T (2013) The removal of cesium ion with natural Itaya zeolite and the ion exchange characteristics. J Chem Technol Biotechnol 88(9):1597–1602CrossRefGoogle Scholar
  10. 10.
    Borai EH, Harjula R, Malinen L, Paajanen A (2009) Efficient removal ofcesium from low level radioactive liquid waste using natural and impregnated zeolite minerals. J Hazard Mater 172(1):416–422CrossRefGoogle Scholar
  11. 11.
    Avramenko V, Bratskaya S, Zheleznov V, Sheveleva I, Viotenko O, Sergienko V (2011) Colloid stable sorbents forcesium removal preparation and application of latex particles functionalized with transition metals ferrocyanides. J Hazard Mater 186(2/3):1343–1350CrossRefGoogle Scholar
  12. 12.
    Ding N, Kanatzidis MG (2010) Selective incarceration of cesium ions by Venus flytrap action of a flexible framework sulphide. Nat Chem 2:187–191CrossRefGoogle Scholar
  13. 13.
    Galamboš M, Kufčáková J, Rajec P (2009) Adsorption of cesium on domestic bentonites. J Radioanal Nucl Chem 281:485–492CrossRefGoogle Scholar
  14. 14.
    Lee JO, Cho WJ, Choi H (2013) Sorption of cesium and iodide ions onto KENTEX-bentonite. Environ Earth Sci 70(5):2387–2395CrossRefGoogle Scholar
  15. 15.
    Belkhiri S, Guerza M, Chouikh S, Boucheffa Y, Mekhalif Z, Delhalle J, Colella C (2012) Textural and structural effects of heat treatment andc-irradiation on Cs-exchanged NaX zeolite, bentonite and their mixtures. Microporous Mesoporous Mater 161:115–122CrossRefGoogle Scholar
  16. 16.
    He YF, Zhang L, Yan DZ, Liu SL, Wang H (2012) Poly(acrylic acid) modifying bentonite with in situ polymerisation for removing lead ions. Water Sci Technol 65(8):1383–1391CrossRefGoogle Scholar
  17. 17.
    He Y, Pei M, Xue N, Wang L, Guo W (2016) Synthesis of sodium polyacrylate–bentonite using in situ polymerisation for Pb2+ removal from aqueous solutions. Rsc Adv 6(53):48145–48154CrossRefGoogle Scholar
  18. 18.
    Xavier CR, Silva APC, Schwingel LC, Borghetti GS, Koester LS (2010) Improvement of genistein content in solid genistein/β-cyclodextrin complexes. Quim Nova 33(3):511–521CrossRefGoogle Scholar
  19. 19.
    Namazi H, Heydari A (2014) Synthesis of β-cyclodextrin-based dendrimer as a novel encapsulation agent. Polym Int 63:1447–1455CrossRefGoogle Scholar
  20. 20.
    Namazi H, Heydari A, Pourfarzolla A (2014) Synthesis of glycoconjugated polymer based on polystyrene and nanoporous β-cyclodextrin to remove copper (II) from water pollution. Int J Polym Mater Polym Biomater 63(1):1–6CrossRefGoogle Scholar
  21. 21.
    Heydari A, Sheibani H (2015) Fabrication of poly (β-cyclodextrin-co-citric acid)/bentonite clay nanocomposite hydrogel: thermal and absorption properties. Rsc Adv 5:82438–82449CrossRefGoogle Scholar
  22. 22.
    Liu HJ, Xie SB, Xia LS, Tang Q, Kang X, Huang F (2016) Study on adsorptive property of bentonite for cesium. Environ Earth Sci 75(2):1–7Google Scholar
  23. 23.
    Qing YH, Li J, Kang B, Chang SQ, Dai YD, Long Q, Yuan C (2015) Selective sorption mechanism of Cs+ on potassium nickel hex-acyanoferrate(II) compounds. J Radioanal Nucl Chem 304(2):527–533CrossRefGoogle Scholar
  24. 24.
    Saini AS, Melo JS (2015) Biosorption of uranium by human black hair. J Environ Radioact 142:29–35CrossRefGoogle Scholar
  25. 25.
    Sun Y, Wang Q, Chen C, Tan X, Wang X (2012) Interaction between Eu(III) and graphene oxide nanosheets investigated by batch and extended X-ray absorption fine structure spectroscopy and by modeling techniques. Environ Sci Technol 46(11):6020–6027CrossRefGoogle Scholar
  26. 26.
    Ismail IM, El-Sourougy MR, Moneim NA, Aly HF (1999) Equilibrium and kinetic studies of the sorption of cesium by potassium nickel hexacyanoferrate complex. J Radioanal Nucl Chem 240(1):59–67CrossRefGoogle Scholar
  27. 27.
    Wang JS, Hu XJ, Liu YG, Xie SB, Bao ZL (2010) Biosorption of uranium (VI) by immobilized i beads. J Environ Radioact 101:504–508CrossRefGoogle Scholar
  28. 28.
    Xiao J, Chen YT, Zhao WH, Xu JB (2013) Sorption behavior of U(VI) onto Chinese bentonite: effect of pH, ionic strength, temperature and humic acid. J Mol Liq 188:178–185CrossRefGoogle Scholar
  29. 29.
    Liu SJ, Li S, Zhang HX, Wu LP, Sun L (2016) Ma JG (2016) Removal of uranium(VI) from aqueous solution using graphene oxide and its amine-functionalized composite. J Radioanal Nucl Chem 309(2):607–614Google Scholar
  30. 30.
    Zong YL, Zhang YD, Lin XY, Ye D, Luo XG, Wang J (2017) Preparation of a novel microsphere adsorbent of prussian blue capsulated in carboxymethyl cellulose sodium for Cs(I) removal from contaminated water. J Radioanal Nucl Chem 311(3):1577–1591CrossRefGoogle Scholar
  31. 31.
    Chalasani R, Vasudevan S (2012) Cyclodextrin functionalized magnetic iron oxide nanocrystals: a host-carrier for magnetic separation of non-polar molecules and arsenic from aqueous media. J Mater Chem 22(30):14925–14931CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  • Hongjuan Liu
    • 1
    • 2
  • Shuibo Xie
    • 1
    • 3
    Email author
  • Tiancheng Wang
    • 2
  • Yingjiu Liu
    • 3
  • Taotao Zeng
    • 3
  1. 1.Key Discipline Laboratory for National Defence for Biotechnology in Uranium Mining and HydrometallurgyUniversity of South ChinaHengyangPeople’s Republic of China
  2. 2.Institute of Nuclear Science and TechnologyUniversity of South ChinaHengyangPeople’s Republic of China
  3. 3.Hunan Province Key Laboratory of Pollution Control and Resources Reuse TechnologyUniversity of South ChinaHengyangPeople’s Republic of China

Personalised recommendations