Advertisement

UV–Vis spectroscopy with chemometric data treatment: an option for on-line control in nuclear industry

  • Dmitry Kirsanov
  • Alisa Rudnitskaya
  • Andrey Legin
  • Vasily Babain
Article

Abstract

Chemometrics can be very useful for the classical field of UV–Vis determination of metals in aqueous solutions. A conventional approach consisting of using selective bands in a univariate mode is often not applicable to the real-world samples from e.g. hydrometallurgical processes, because of overlapping signals, light scattering on foreign particles, gas bubble formation, etc. And this is where chemometrics can do a good job. This paper overviews certain contributions to the field of multivariate data processing of UV–Vis spectra for seemingly simple case of metal detection in aqueous solutions. Special attention is given to applications in nuclear technology field.

Keywords

UV–Vis spectroscopy Chemometrics Metals On-line control Process analytical technology Nuclear technology 

Notes

Acknowledgement

This work was partially financially supported by Government of Russian Federation (Grant 074-U01).

References

  1. 1.
    Wold S (1972) Spline functions, a new tool in data-analysis. Kem Tidskr 3:34–37Google Scholar
  2. 2.
    Wold S, Sjöström M (1998) Chemometrics, present and future success. Chemom Intel Lab Syst 44:3–14CrossRefGoogle Scholar
  3. 3.
    Wetzel D (1983) Near-infrared reflectance analysis. Anal Chem 55:1165A–1176ACrossRefGoogle Scholar
  4. 4.
    Blanco M, Villarroya I (2002) NIR spectroscopy: a rapid-response analytical tool. Trends Anal Chem 21:240–250CrossRefGoogle Scholar
  5. 5.
    Roggo Y, Chalus P, Maurer L, Lema-Martinez C, Edmond A, Jent N (2007) A review of near infrared spectroscopy and chemometrics in pharmaceutical technologies. J Pharmaceut Biomed 44:683–700CrossRefGoogle Scholar
  6. 6.
    Jimaré Benito M, Bosch Ojeda C, Sanchez Rojas F (2008) Process analytical chemistry: applications of near infrared spectrometry in environmental and food analysis—an overview. Appl Spectrosc Rev 43:452–484CrossRefGoogle Scholar
  7. 7.
    Andrade-Garda JM (ed) (2009) Basic chemometric techniques in atomic spectroscopy. RSC Publishing, LondonGoogle Scholar
  8. 8.
    Henry R, Koller D, Liezers M, Farmer OT III, Barinaga C, Koppenaal D, Wacker J (2001) New advances in inductively coupled plasma–mass spectrometry (ICP-MS) for routine measurements in the nuclear industry. J Radioanal Nucl Chem 249:103–108CrossRefGoogle Scholar
  9. 9.
    Pathak AK, Kumar R, Singh VK, Agrawal R, Rai S, Kumar Rai A (2012) Basic chemometric techniques in atomic spectroscopy. Appl Spectrosc Rev 47:14–40CrossRefGoogle Scholar
  10. 10.
    Downey G (1998) Food and food ingredient authentication by mid-infrared spectroscopy and chemometrics (review). Trends Anal Chem 17:418–424CrossRefGoogle Scholar
  11. 11.
    Łobiński R, Marczenko Z (1992) Recent advances in ultraviolet-visible spectrophotometry. Crit Rev Anal Chem 23:55–111CrossRefGoogle Scholar
  12. 12.
    Otto M, Wegscheider W (1985) Spectrophotometric multicomponent analysis applied to trace metal determinations. Anal Chem 57:63–69CrossRefGoogle Scholar
  13. 13.
    Bebee K, Kowalski B (1987) An introduction to multivariate calibration and analysis. Anal Chem 59:1007CrossRefGoogle Scholar
  14. 14.
    Thomas E, Haaland D (1990) Comparison of multivariate calibration methods for quantitative spectral analysis. Anal Chem 62:1091–1099CrossRefGoogle Scholar
  15. 15.
    Vitouchová M, Jančář L, Sommer L (1992) Interaction of iron(II) and the simultaneous spectrophotometric determination of Fe, Cu, Zn, Co and Ni with 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol. Fresenius J Anal Chem 343:274–279CrossRefGoogle Scholar
  16. 16.
    Rodriguez A, de Torres A, Pavon J, Ojeda C (1993) Simultaneous spectrophotometric determination of cadmium, copper and zinc. Talanta 40:1861–1866CrossRefGoogle Scholar
  17. 17.
    Rodriguez A, de Torres A, Pavon J, Ojeda C (1998) Simultaneous determination of iron, cobalt, nickel and copper by UV–visible spectrophotometry with multivariate calibration. Talanta 47:463–470CrossRefGoogle Scholar
  18. 18.
    Iida Y (1987) Repetitive spectral subtraction method for the spectrophotometric determination of rare earth elements. Fresenius J Anal Chem 328:547–552CrossRefGoogle Scholar
  19. 19.
    Carey W, Wangen L (1989) Spectrophotometric method for the analysis of plutonium and nitric acid using partial least-squares regression. Anal Chem 61:1667–1669CrossRefGoogle Scholar
  20. 20.
    Carey W, Wangen L (1991) Determining chemical characteristics of plutonium solutions using visible spectrometry and multivariate chemometric methods. Chemom Intell Lab Syst 10:245–257CrossRefGoogle Scholar
  21. 21.
    Peralta-Zamora P, Cornejo-Ponce L, Nagata N, Poppi R (1997) Chemometric alternatives for resolution of classical analytical problems. Spectrophotometric determination of lanthanide mixtures. Talanta 44:1815–1822CrossRefGoogle Scholar
  22. 22.
    Meinrath G (1998) Chemometric analysis: uranium(VI) hydrolysis by UV–Vis spectroscopy. J Alloy Compounds 277:777–781CrossRefGoogle Scholar
  23. 23.
    Meinrath G (1998) Direct spectroscopic speciation of schoepite-aqueous phase equilibria. J Radioanal Nucl Chem 232:179–188CrossRefGoogle Scholar
  24. 24.
    Meinrath G, Lis S, But S, Elbanowski M (2001) Chemometric and statistical analysis of polyoxometalate interaction with lanthanide(III) ions. Talanta 55:371–386CrossRefGoogle Scholar
  25. 25.
    Meinrath G, Lis S, Elbanowski M (2004) Spectroscopy, chemometrics and metrology—three aspects of lanthanide chemistry. J Alloy Compounds 380:413–417CrossRefGoogle Scholar
  26. 26.
    Meinrath G, Lis S, Böhme U (2006) Quantitative evaluation of Ln(III) pyridine N-oxide carboxylic acid spectra under chemometric and metrological aspects. J Alloy Compounds 412:962–969CrossRefGoogle Scholar
  27. 27.
    Kaczmarek M, Meinrath G, Lis S, Kufelnicki A (2008) The interaction of arsenazo III with Nd(III)—a chemometric and metrological analysis. J Solut Chem 37:933–946CrossRefGoogle Scholar
  28. 28.
    Lis S, Meinrath G, Glatty Z, Kubicki M (2010) Spectroscopic speciation and structural characterisation of uranyl(VI) interaction with pyridine carboxylic acid N-oxide derivatives. Inorg Chim Acta 363:3847–3855CrossRefGoogle Scholar
  29. 29.
    Ni Y, Wu Y (1999) Spectrophotometric determination of europium, terbium and yttrium in a perchloric acid solution by the Kalman filter approach. Anal Sci 15:1123–1127CrossRefGoogle Scholar
  30. 30.
    Haswell S, Walmsley A (1999) Chemometrics: the issues of measurement and modelling. Anal Chim Acta 400:399–412CrossRefGoogle Scholar
  31. 31.
    Wang L, Wang X, Wang Y (2013) Structure of a piperidine-modified calix[4]arene derivative and spectral resolution of its interaction with rare earth metals with chemometric methods. Spectrochim Acta A 105:62–66CrossRefGoogle Scholar
  32. 32.
    Rodionova O, Tikhomirova T, Pomerantsev A (2015) Spectrophotometric determination of Rare Earth Elements in aqueous nitric acid solutions for process control. Anal Chim Acta 869:59–67CrossRefGoogle Scholar
  33. 33.
    Baumgärtner F, Ertel D (1980) The modern PUREX process and its analytical requirements. J Radioanal Chem 58(1–2):11–28CrossRefGoogle Scholar
  34. 34.
    Ache H (1992) Analytical chemistry in nuclear technology. Fresenius J Anal Chem 343:852–862CrossRefGoogle Scholar
  35. 35.
    Pomerantsev A, Rodionova O (2012) Process analytical technology: a critical view of the chemometricians. J Chemom 26:299–310CrossRefGoogle Scholar
  36. 36.
    Richter S, Goldberg S (2003) Improved techniques for high accuracy isotope ratio measurements of nuclear materials using thermal ionization mass spectrometry. Int J Mass Spectrom 229:181–197CrossRefGoogle Scholar
  37. 37.
    Chartier F, Aubert M, Pilier M (1999) Determination of Am and Cm in spent nuclear fuels by isotope dilution inductively coupled plasma mass spectrometry and isotope dilution thermal ionization mass spectrometry after separation by high-performance liquid chromatography. Fresenius J Anal Chem 364:320–327CrossRefGoogle Scholar
  38. 38.
    Betti M (1997) Use of ion chromatography for the determination of fission products and actinides in nuclear applications. J Chromatogr A 789:369–379CrossRefGoogle Scholar
  39. 39.
    Benedict M, Pigford T, Levi H (1981) Nuclear chemical engineering, 2nd edn. McGraw-Hill, New York, pp 457–564Google Scholar
  40. 40.
    Mathur J, Murali M, Nash K (2001) Actinide partitioning—a review. Solv Extr Ion Exch 19:357–390CrossRefGoogle Scholar
  41. 41.
    Tachimori S, Morita Y (2009) Overview of solvent extraction chemistry for reprocessing. Ion exchange & solvent extraction: a series of advances, vol 19. CRC Press, Boca Raton, pp 1–63CrossRefGoogle Scholar
  42. 42.
    Bostick D (1978) The simultaneous analysis of uranium and nitrate. ORNL/TM-6292, Oak Ridge National Laboratory Report. http://www.osti.gov/scitech/biblio/5080075, Accessed 25 Jan 2017
  43. 43.
    Rodden C (1941) Spectrophotometric determination of praseodymium, neodymium, and samarium. J Res Nat Bur Stand 26:557–570CrossRefGoogle Scholar
  44. 44.
    Parus J, Kierzek J, Zoltowski T (1977) Online control of nuclear fuel reprocessing. Nukleonika 22:759–776Google Scholar
  45. 45.
    Madic C, Hobart D, Begun G (1983) Raman spectrometric studies of actinide(V) and actinide(VI) complexes in aqueous sodium-carbonate solution and of solid sodium actinide(V) carbonate compounds. Inorg Chem 22:1494–1503CrossRefGoogle Scholar
  46. 46.
    Madic C, Begun G, Hobart D, Hahn R (1984) Raman spectroscopy of neptunyl and plutonyl ions in aqueous solution: neptunium(VI) and plutonium(VI) and disproportionation of plutonium(V). Inorg Chem 23:1914–1921CrossRefGoogle Scholar
  47. 47.
    Colston B, Choppin G (2001) Evaluating the performance of a stopped-flow near-infrared spectrophotometer for studying fast kinetics of actinide reactions. J Radioanal Nucl Chem 251:21–26Google Scholar
  48. 48.
    Janssens-Maenhout G, Nucifora S (2007) Feasibility study of a microsystem to analyse radioactive solutions. Nucl Eng Design 237:1209–1219CrossRefGoogle Scholar
  49. 49.
    Warburton J, Smith N, Czerwinski K (2010) Method for online process monitoring for use in solvent extraction and actinide separations. Sep Scie Technol 45:1763–1768CrossRefGoogle Scholar
  50. 50.
    Lascola R, Livingston R, Sanders M, McCarty J, Dunning J (2002) Online spectrophotometric measurements of uranium and nitrate concentrations of process solutions for Savannah River Site’s H-Canyon. J Process Anal Chem 7:14–20Google Scholar
  51. 51.
    Smith N, Cerefice G, Czerwinski K (2013) Fluorescence and absorbance spectroscopy of the uranyl ion in nitric acid for process monitoring applications. J Radioanal Nucl Chem 295:1553–1560CrossRefGoogle Scholar
  52. 52.
    Fujii T, Egusa S, Uehara A, Yamana H, Morita Y (2013) Quantitative analysis of neodymium, uranium, and palladium in nitric acid solution by reflection absorption spectrophotometry. J Radioanal Nucl Chem 295:2059–2062CrossRefGoogle Scholar
  53. 53.
    Ganesh S, Velavendan P, Pandey N, Kamachi Mudali U, Natarajan R (2013) Direct spectrophotometric determination of ruthenium in aqueous streams of nuclear reprocessing. Radioanal Nucl Chem 295:2091–2094CrossRefGoogle Scholar
  54. 54.
    Fukasawa T, Kawamura F (1991) Photochemical reactions of neptunium in nitric acid solution containing photocatalyst. J Nucl Scie Technol 28:27–32CrossRefGoogle Scholar
  55. 55.
    Precek M, Paulenova A, Mincher B (2012) Reduction of Np(VI) in irradiated solutions of nitric acid. Proced Chem 7:51–58CrossRefGoogle Scholar
  56. 56.
    Guillaume B, Hobart D, Bourges J (1981) Cation-cation complexes of pentavalent actinides 2. Spectrophotometric study of complexes of Am(V) with U022+ and Np022+ in aqueous perchlorate solution. J Inorg Nucl Chem 43:3295–3299CrossRefGoogle Scholar
  57. 57.
    Boisde G, Perez J (1984) Remote Spectrometry With Optical Fibers, Ten Years Of Development And Prospects For On-Line Control. Proceedings SPIE 0514, 2nd international conference on optical fiber sensors: OFS’84, 227 (November 21, 1984); http://dx.doi.org/10.1117/12.945088, Accessed 25 Jan 2017
  58. 58.
    Moser D, Klatt L (1986) Application of in-line photometer to solvent extraction process control, Control and instrumentation http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/18/050/18050429.pdf, Accessed 25 Jan 2017
  59. 59.
    Van Hare D, O’Rourke P, Prather W (1988) Online fiber optic spectrophotometry (No. DP-MS-88-186; CONF-881143-1) Savannah River National Laboratory Report, Aiken, USA, http://www.osti.gov/scitech/biblio/6710161, Accessed 25 Jan 2017
  60. 60.
    O’Rourke P, Van Hare D, Prather W (1992) On-line process control monitoring system. US Patent 5131746Google Scholar
  61. 61.
    Biirck J (1991) Spectrophotometric determination of uranium and nitric acid by applying partial least squares regression to uranium(VI) absorption spectra. Anal Chim Acta 254:159–165CrossRefGoogle Scholar
  62. 62.
    Bryan S, Levitskaia T (2007) Monitoring and control of Purex radiochemical processes. Proceedings of international conference GLOBAL-2007, Boise, Idaho. http://toc.proceedings.com/02031webtoc.pdf, Accessed 25 Jan 2017
  63. 63.
    Bryan S, Levitskaia T, Casella A, Peterson J, Johnsen A, Lines A, Thomas E (2011) In: Nash KL, Lumetta GJ (eds) Advanced separation techniques for nuclear fuel reprocessing and radioactive waste treatment. Woodhead Publishing, SawstonGoogle Scholar
  64. 64.
    Kirsanov D, Babain V, Agafonova-Moroz M, Lumpov A, Legin A (2012) Combination of optical spectroscopy and chemometric techniques–a possible way for on-line monitoring of spent nuclear fuel (SNF) reprocessing. Radiochim Acta 100:185–188CrossRefGoogle Scholar
  65. 65.
    Kirsanov D, Babain V, Agafonova-Moroz M, Lumpov A, Legin A (2013) Approach to on-line monitoring of PUREX process using chemometric processing of the optical spectral data. Radiochim Acta 101:149–154CrossRefGoogle Scholar
  66. 66.
    Li L, Zhang H, Ye G (2013) Simultaneous spectrophotometric determination of uranium, nitric acid and nitrous acid by least-squares method in PUREX process. J Radioanal Nucl Chem 295:325–330CrossRefGoogle Scholar
  67. 67.
    Bryan S, Levitskaia T, Johnsen A, Orton C, Peterson J (2011) Spectroscopic monitoring of spent nuclear fuel reprocessing streams: an evaluation of spent fuel solutions via Raman, visible, and near-infrared spectroscopy. Radiochim Acta 99:563–572CrossRefGoogle Scholar
  68. 68.
    Nee K, Bryan S, Levitskaia T, Nilsson M (2013) Spectroscopic and physicochemical measurements for on-line monitoring of used nuclear fuel separation processes. Proceedings of international conference GLOBAL-2013, Salt Lake City, Utah, September 29–October 3, 2013, pp. 931–935, http://toc.proceedings.com/21109webtoc.pdf, Accessed 25 Jan 2017
  69. 69.
    Casella A, Levitskaia T, Peterson J, Bryan S (2013) Water O–H stretching Raman signature for strong acid monitoring via multivariate analysis. Anal Chem 85:4120–4128CrossRefGoogle Scholar
  70. 70.
    Casella A, Ahlers L, Campbell E, Levitskaia T, Peterson J, Smith F, Bryan S (2015) Development of online spectroscopic pH monitoring for nuclear fuel reprocessing plants: weak acid schemes. Anal Chem 87:5139–5147CrossRefGoogle Scholar
  71. 71.
    Bryan S, Levitskaia T, Casella A, Peterson J (2013) Spectroscopic online monitoring for process control and safeguarding of radiochemical fuel reprocessing streams. In the proceedings of WM2013 conference, Phoenix, Arizona USA, February 24 – 28, 2013, http://www.wmsym.org/archives/2013/papers/13553.pdf, Accessed 25 Jan 2017
  72. 72.
    Debus B, Kirsanov D, Ruckebusch C, Agafonova-Moroz M, Babain V, Lumpov A, Legin A (2015) Restoring important process information from complex optical spectra with MCR-ALS: Case study of actinides reduction in spent nuclear fuel reprocessing. Chemom Intel Lab Syst 146:241–249CrossRefGoogle Scholar
  73. 73.
    Rodionova O, Pomerantsev A (2016) Non-linear multivariate curve resolution applied to the spectrophotometric determination of cerium(III) in aqueous nitric acid solutions for process control. Anal Methods 8:435–440CrossRefGoogle Scholar
  74. 74.
    Manne R (1995) On the resolution problem in hyphenated chromatography. Chemom Intel Lab Syst 27:89–94CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  1. 1.Institute of ChemistrySt. Petersburg State UniversitySt. PetersburgRussia
  2. 2.Laboratory of Artificial Sensory SystemsITMO UniversitySt. PetersburgRussia
  3. 3.CESAM and Chemistry DepartmentAveiro UniversityAveiroPortugal
  4. 4.Three Arc MiningInc.MoscowRussia

Personalised recommendations