Nuclear techniques applied to provenance and technological studies of Renaissance majolica roundels from Portuguese museums attributed to della Robbia Italian workshop

  • M. I. Dias
  • M. I. Prudêncio
  • Zsolt Kasztovszky
  • Boglárka Maróti
  • Ildikó Harsányi
  • P. Flor


Artistic and historical examination of high-quality glazed terracotta sculptures displayed in various Portuguese museums point to their production in della Robbia workshop of Florence (Italy). A multitechnique analytical approach is applied for the first time to these sculptures, aiming to confirm their origin. Materials were analyzed using Instrumental Neutron Activation Analysis, Prompt Gamma Activation Analysis and X-ray Diffraction. The compositional results are similar to other della Robbia sculptures, suggesting a common origin for the raw material that was identified as carbonate rich marine origin marly clay. The applied firing temperatures was proved to be around 900 °C. The differences found within each sculpture are explained by the production technique of assembling separate parts to produce these huge sculptures, and the clay pit heterogeneity.


Prompt gamma activation analysis (PGAA) Instrumental neutron activation analysis (INAA) X-ray diffraction (XRD) della Robbia Portuguese collections Renaissance Italian sculptures Provenance and technological studies of terracotas 



C2TN/IST authors gratefully acknowledge the Fundação para a Ciência e Tecnologia (FCT) support through the UID/Multi/04349/2013 project and to the staff of the Portuguese Research Reactor (RPI) of CTN/IST for their assistance with the neutron irradiations. Special thanks also to the Portuguese FCT research funded in the frame of the project PTDC/HIS/HEC/116742/2010, and to the CHARISMA funded (Grant Agreement no. 228330) project at the Budapest Neutron Center.


  1. 1.
    Flor P (2014) Della Robbia em Portugal: o caso da colecção de D. Fernando II. Artis—Revista de História da Arte e Ciências do Património 2:80–87Google Scholar
  2. 2.
    Marquand A (1972) Luca Della Robbia. Princeton monographs in art and archaelogy: III, 1914, reprinted by Hacker Art Books IncGoogle Scholar
  3. 3.
    Gentilini G (1992) I Della Robbia. La scultura invetriata nel Rinascimento, 2 vols. Firenze, CantiniGoogle Scholar
  4. 4.
    Strozzi B (2012) Ciseri, Ilaria La Raccolta delle Robbiane, 2012. Firenze, Edizione PolistampaGoogle Scholar
  5. 5.
    Kingery WD, Aronson M (1990) The Glazes of Luca Della Robbia. Faenza 5:221–224Google Scholar
  6. 6.
    Kingery WD, Aronson M (1990) On the technology of Renaissance maiolica glazes. Bollettino del Museo Internazionale delle Ceramiche, Faenza, pp 226–235Google Scholar
  7. 7.
    Bouquillon A (2000) L’analyse des glacures archeologiques. Archéométrie 253:30–35Google Scholar
  8. 8.
    Bouquillon A, Castaing J, Vartanian E, Zink A, Zucchiati A (2002) Etude des oeuvres robbiesques: le cas de San Frediano. In: Gaborit JR, Bormand M (eds) Reunion des Musées de France. Les Della Robbia, Sculptures en terre cuite émaillée de la Renaissance italienne, pp 140–158Google Scholar
  9. 9.
    Pappalardo G, Costa E, Marchetta C, Pappalardo L, Romano FP, Zucchiatti A, Prati P, Mandò PA, Migliori A, Palombo L, Vaccari MG (2004) Non-destructive characterization of Della Robbia sculptures at the Bargello museum in Florence by the combined use of PIXE and XRF portable systems. J Cult Herit 5:183–188CrossRefGoogle Scholar
  10. 10.
    Sakellariou K, Miliani C, Morresi A, Ombelli M (2004) Spectroscopic investigation of yellow majolica glazes. J Raman Spectrosc 35:61–67CrossRefGoogle Scholar
  11. 11.
    Zucchiatti A, Bouquillon A, Salomon J, Gaborit JR (2000) Study of Italian renaissance sculptures using an external beam nuclear microprobe. Nucl Instrum Methods Phys Res B 161–163:699–703CrossRefGoogle Scholar
  12. 12.
    Zucchiatti A, Bouquillon A, Lanterna G, Lucarelli F, Mandò PA, Prati P, Salomon J, Vaccari MG (2002) PIXE and μ-PIXE analysis of glazes from terracotta sculptures of the Della Robbia workshop. Nucl Instrum Methods Phys Res B 189:358–363CrossRefGoogle Scholar
  13. 13.
    Zucchiatti A, Bouquillon A, Salomon J, Gaborit JR (2003) Elemental analyses of a group of glazed terracotta angels from the Italian renaissance as a tool for the reconstruction of a complex conservation history. Archaeometry 45:391–404CrossRefGoogle Scholar
  14. 14.
    Zucchiatti A, Bouquillon A, Katona J, D’Alessandro A (2006) The ‘Della Robbia Blue’: a case study for the use of cobalt pigments in ceramics during the Italian renaissance. Archaeometry 48:131–152CrossRefGoogle Scholar
  15. 15.
    Sendova M, Zhelyaskov V, Scalera M, Gulliford C (2007) Micro-raman spectroscopy characterization of della Robbia glazes. Archaeometry 49(4):655–664CrossRefGoogle Scholar
  16. 16.
    Bouquillon A, Lucarelli F, Mandò PA, Lanterna G, Salomon J, Prati P, Vaccari MG, Zucchiatti A (2001), Analisi non distruttive di smalti robbiani con fasci di ioni. In: del Giglio E (ed) Atti del XXXIV Convegno Internazionale Della Ceramica, Savona, 25–26 Maggio, Firenze, pp 157–162Google Scholar
  17. 17.
    Bouquillon A (2004) Heaven and earth—Madonne col Bambino and Rustiques figulines. Appl Phys A 79:161–166CrossRefGoogle Scholar
  18. 18.
    Bouquillon A, Zucchiatti A, Castaing J, Katon I (2004) Les Della Robbia: matière et transfiguration. Technè 20:13–18Google Scholar
  19. 19.
    Pope Hennessy J (1980) Luca della Robbia, N.Y. Cornell University Press, Ithaca, pp 33–39Google Scholar
  20. 20.
    Kasztovszky Zs (2007) Application of prompt gamma activation analysis to investigate archaeological ceramics. Archeometriai Műhely 2:49–54Google Scholar
  21. 21.
    Szilágyi V, Gyarmati J, Tóth M, Taubald H, Balla M, Kasztovszky Zs, Szakmány Gy (2012) Petro-mineralogy and geochemistry as tools of provenance analysis on archaeological pottery: study of Inka period ceramics from Paria, Bolivia. J S Am Earth Sci 36(1):1–17CrossRefGoogle Scholar
  22. 22.
    Révay Z, Belgya T (2004) Principles of PGAA method. In: Molnár GL (ed) Handbook of prompt gamma activation, analysis with neutron beams. Kluwer Academic Publishers, Dordrecht/Boston/New York, pp 1–30CrossRefGoogle Scholar
  23. 23.
    Révay Z, Firestone RB, Belgya T, Molnár GL (2004) Prompt gamma-ray spectrum catalog. In: Molnár GL (ed) Handb. Prompt gamma Act. Anal. neutron beams. Springer, US, Boston, pp 173–364CrossRefGoogle Scholar
  24. 24.
    Révay Z (2009) Determining elemental compositions using prompt γ activation analysis. Anal Chem 81:6851–6859CrossRefGoogle Scholar
  25. 25.
    Dias MI, Prudêncio MI, Matos MA, Rodrigues AL (2013), Tracing the origin of blue and white Chinese Porcelain ordered for the Portuguese market during the Ming dynasty using INAA. J Archaeol Sci 40/7:3046–3057.
  26. 26.
    Dias MI, Prudêncio MI, Gouveia MA, Trindade MJ, Marques R, Franco D, Raposo J, Fabião CS, Guerra A (2010) Chemical tracers of Lusitanian amphorae kilns from the Tagus estuary (Portugal). J Archeol Sci 37:784–798Google Scholar
  27. 27.
    Prudêncio MI, Dias MI, Gouveia MA, Marques R, Franco D, Trindade MJ (2009) Geochemical signatures of Roman amphorae produced in the Sado River estuary, Lusitania (Western Portugal). J Archeol Sci 36:873–883CrossRefGoogle Scholar
  28. 28.
    Sanjurjo Sánchez J, Trindade MJ, Blanco-Rotea R, Benavides Garcia R, Fernández Mosquera D, Burbidge C, Prudêncio MI, Dias MI (2010), Chemical and mineralogical characterization of historic mortars from the Santa Eulalia de Bóveda temple, NW Spain. J Archaeol Sci 37(9):2346–2351Google Scholar
  29. 29.
    Schultz LG (1964) Quantitative interpretation of mineralogical composition from X-ray and chemical data for the Pierre Shale. United States Geological Survey, Professional Paper, 391-C, pp 1–31Google Scholar
  30. 30.
    Luca LaTores M (2009) Della Robbia as Maiolica producer: artists and artisans in fifteenth-century florence. Graduation with Departmental Honors in Art History. Norton, MAGoogle Scholar
  31. 31.
    Chatenet M, Meunier F, Prévet A (2012) Le château de faience de François Ier. Les terres cuites émaillées de Giorlamo Della Robbia au château de Madrid, Paris, Éd. CTHSGoogle Scholar
  32. 32.
    Domestici F (1992) Della Robbia—a family of artists. Firenze, Scala/RiversideGoogle Scholar
  33. 33.
    Welch E (2005) Shopping in the renaissance. Yale University PressGoogle Scholar
  34. 34.
    Archaeometry special issue (2007) Acknowledging fifty years of neutron activation analysis in archaeology, number 49, 2Google Scholar
  35. 35.
    Fernandes AC, Santos JP, Marques JG, Kling A, Ramos AR, Barradas JNP (2010) Validation of the Monte Carlo model supporting core conversion of the Portuguese research reactor (RPI) for neutron fluence rate determinations. Ann Nucl Energy 37:1139–1145CrossRefGoogle Scholar
  36. 36.
    Gouveia MA, Prudêncio MI, Morgado I, Cabral JMP (1992) New data on the GSJ reference rocks JB-1a and JG-1a by instrumental neutron activation analysis. J Radioanal Nucl Chem 158(1):115–120CrossRefGoogle Scholar
  37. 37.
    Gouveia MA, Prudêncio MI (2000) New data on sixteen reference materials obtained by INAA. J Radioanal Nucl Chem 245(1):105–108CrossRefGoogle Scholar
  38. 38.
    Dias MI, Prudêncio MI (2007) Neutron activation analysis of archaeological materials: an overview of the ITN NAA laboratory. Portugal Archaeom 49(2):383–393CrossRefGoogle Scholar
  39. 39.
    Révay Zs, Belgya T, Kasztovszky Zs, Weil JL, Molnár GL (2004), Cold neutron PGAA facility at Budapest, Nucl Instrum Methods Phys Res B 213:385–388Google Scholar
  40. 40.
    Szentmiklósi L, Belgya T, Révay Zs, Kis Z (2010) Upgrade of the prompt gamma activation analysis and the neutron-induced prompt gamma spectroscopy facilities at the Budapest research reactor. J Radioanal Nucl Chem 286:501–505CrossRefGoogle Scholar
  41. 41.
    Révay Z, Belgya T, Molnár GL (2005) Application of hypermet-PC in PGAA. J Radioanal Nucl Chem 265:261–265CrossRefGoogle Scholar
  42. 42.
    Révay Z (2006) Calculation of uncertainties in prompt gamma activation analysis. Nucl Instrum Methods A 564:688–697CrossRefGoogle Scholar
  43. 43.
    Trindade MJ, Rocha F, Dias MI, Prudêncio MI (2013) Mineralogy and grain-size distribution of clay-rich rock units of the Algarve Basin (South Portugal). Clay Miner 48(1):59–83. doi: 10.1180/claymin.2013.048.1.04 CrossRefGoogle Scholar
  44. 44.
    Biscaye PE (1965) Mineralogy and sedimentation of recent deep-sea clays in the Atlantic Ocean and adjacent seas and oceans. Geol Soc Am Bull 76:803–832. doi: 10.1130/0016-7606(1965)76[803:MASORD]2.0.CO;2 CrossRefGoogle Scholar
  45. 45.
    Martin-Pozas JM (1968) El analisis mineralógico cuantitativo de los filosilicatos de la arcilla por difracción de rayos X. PhD thesis, University of Granada, SpainGoogle Scholar
  46. 46.
    Brown G, Brindley GW (1980) X-ray diffraction procedures for clay mineral identification. In: Brindley GW, Brown G (eds) Cristal structures of clay minerals and their X-ray identification. Mineralogical Society, London, pp 305–360Google Scholar
  47. 47.
    Trindade MJ, Dias MI, Coroado J, Rocha F (2009) Mineralogical transformations of calcareous rich clays with firing: a comparative study between calcite and dolomite rich clays from Algarve (Portugal). Appl Clay Sci 42:345–355CrossRefGoogle Scholar
  48. 48.
    Trindade MJ, Dias MI, Coroado J, Rocha F (2010) Firing tests on clay rich raw materials from the Algarve Basin (South Portugal): study of the mineral transformations with temperature. Clay Clay Miner 58:188–204CrossRefGoogle Scholar
  49. 49.
    Trindade MJ, Dias MI, Rocha F, Prudêncio MI, Coroado J (2011) Bromine volatilization during firing of calcareous and non-calcareous clays: archaeometric implications. Appl Clay Sci 53:489–499CrossRefGoogle Scholar
  50. 50.
    Cultrone G, Rodriguez-Navarro C, Sebastian E, Cazalla O, De La Torre MJ (2001) Carbonate and silicate phase reactions during ceramic firing. Eur J Miner 13:621–634CrossRefGoogle Scholar
  51. 51.
    Dondi M, Ercolani G, Fabbri B, Marsigli M (1998) An approach to the chemistry of pyroxenes formed during the firing of Ca-rich silicate ceramics. Clay Miner 33:443–452CrossRefGoogle Scholar
  52. 52.
    Bauluz B, Mayayo MJ, Yuste A, Fernandez-Nieto CJ, Gonzalez Lopez M (2004) TEM study of mineral transformations in fired carbonated clays: relevance to brick making. Clay Miner 39:333–344CrossRefGoogle Scholar
  53. 53.
    Piccolpasso C (1980 re-ed.) The three books of the Potter’s art: a facsimile of the manuscript in the Victoria and Albert Museum, London, Translated and Introduced by Ronald Lightbown and Alan Caiger-Smith, 1934. London: Scolar Press, re-edition 1980Google Scholar
  54. 54.
    Kingery WD (1993) Painterly Maiolica of the Italian Renaissance. Technol Culture 34(1):28–48CrossRefGoogle Scholar
  55. 55.
    Molera J, Pradell T, Vendrell-Saz M (1998) The colours of Ca rich ceramic pastes: origin and characterization. Appl Clay Sci 13:187–202CrossRefGoogle Scholar
  56. 56.
    Tite M, Freestone I, Mason R, Molera J, Vendrell-Saz M, Wood N (1998) Lead glazes in antiquity: methods of production and reason for use. Archaeometry 40(2):241–260CrossRefGoogle Scholar
  57. 57.
    Tite M (2009) The production technology of Italian maiolica: a reassessment. J Archaeol Sci 36:2065–2080CrossRefGoogle Scholar
  58. 58.
    Tite M (1970) An interpretation of thermal-expansion data from clay ceramics. Trans Brit Ceram Soc 69:183–187Google Scholar
  59. 59.
    Tite M (2012) Italian maiolica. The older potter’s almanac 7(2):1–7. ISSN 0965-7479Google Scholar
  60. 60.
    Evensen NM, Hamilton PJ, O’Nions RK (1978) Rare earth abundances in chondritic meteorites. Geochem Cosmochem Acta 42:1199–1212CrossRefGoogle Scholar
  61. 61.
    Tite M (1991) Technological investigations of Italian Renaissance ceramics. In: Wilson T (ed) Italian renaissance pottery. British Museum Press, LondonGoogle Scholar
  62. 62.
    Olson RJM, Barbour DS (2001) Toward a new method for studying glazed terracottas: examining a group of tondi by Andrea della Robbia. Apollo 154(475):44–52Google Scholar
  63. 63.
    Bouquillon A, Bormand M, Zucchiatti A (2011), Dieci anni di studi – Dix ans d’études, Sagep EditoriGoogle Scholar
  64. 64.
    Gliozzo E, Lacoviello F (2014) Geosources for ceramic production: the clays from the Neogene-Quaternary Albegna Basin (southern Tuscany). Appl Clay Sci 91–92:105–116. doi: 10.1016/j.clay.2014.01.012 CrossRefGoogle Scholar
  65. 65.
    Abbate E, Boccaletti M, Braga G, Coli M, Dallan Nardi L, Marchetti G, Nardi R, Pochini A, Puccinelli A (1982), Le Unit Toscane. In: Note illustrative della carta strutturale dellAppennino Settentrionale, C.N.R, Florence (Italy), Prog. Fin.Geodinamica, L.A.C., pp 46–65Google Scholar
  66. 66.
    Moretti S (1994), The Northern Apennines Proceeding 76th summer meeting of the Italian Geological Society, vol 3, pp 739–956Google Scholar
  67. 67.
    Cortecci G, Dinelli E, Bencini A, Adorni-Braccesi A, La Ruffa G (2002) Natural and anthropogenic SO4 sources in the Arno river catchment, northern Tuscany, Italy: a chemical and isotopic reconnaissance. Appl Geochem 17:79–92CrossRefGoogle Scholar
  68. 68.
    Grandjean P, Cappetta H, Michard A, Albarede F (1987) The assessment of REE patterns and 143Nd/144Nd ratios in fish remains. Earth Planet Sci Lett 84:181–196CrossRefGoogle Scholar
  69. 69.
    Grandjean P, Cappetta H, Albarede F (1988) The REE and Nd of 40–70 Ma old fish debris from the West-African platform. Geophys Res Lett 15:389–392CrossRefGoogle Scholar
  70. 70.
    Liu YG, Miah MRU, Schmitt RA (1988) Cerium: a chemical tracer for paleo-oceanic redox conditions. Geochim Cosmochim Acta 52:1361–1371CrossRefGoogle Scholar
  71. 71.
    German CR, Elderfield H (1990) 9, Application of the Ce anomaly as a paleoredox indicator: the ground rules. Paleoceanography 5(5):823–833CrossRefGoogle Scholar
  72. 72.
    Nath BN, Bau M, Ramlingeswara-Rao B, Rao ChM (1997) Trace and rare earth elemental variation in Arabian Sea sediments through a transect across the oxygen minimum zone. Geochim Cosmochim Acta 61:2375–2388CrossRefGoogle Scholar
  73. 73.
    Leung PL, Luo H (2000) A study of provenance and dating of ancient Chinese porcelain by X-ray fluorescence spectrometry. X-Ray Spectrom 29:34–38CrossRefGoogle Scholar
  74. 74.
    Agosti G, Andreoni A, Fabbri B, Kumar F, Lanterna G, Mingazzini C, Moioli P, Moradei R, Seccaroni C, Vaccari MG (1997) Una papa in terracotta invetriata di produzione Robbiana: metodi integrati di indagine e restauro. OPD Restauro 9:73–90Google Scholar
  75. 75.
    Vaccari MG (1998) Techniche e metodi di lavorazione. I della Robbia e “l’arte nuova” della scultura inventriata, Florence, Giunti Gruppo Editoriale, pp 97–116Google Scholar
  76. 76.
    Bouquillon A, Zucchiatti A (2009) Quel che dicono in segreto l’argilla, la sabbia egli ossidi: I della Robbia. In: Gentilini G, Fornasari L (eds) I della Robbia: il dialogo tra le Arti nel Rinascimento, Arezzo. Skira, Milano, pp 377–385Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  1. 1.Centro de Ciências e Tecnologias Nucleares– C2TN, Instituto Superior TécnicoBobadela LRSPortugal
  2. 2.Centre for Energy ResearchHungarian Academy of SciencesBudapestHungary
  3. 3.Univ. Aberta/Inst.História Arte da Fac, Ciências Sociais e Humanas da Univ. Nova De LisboaLisbonPortugal

Personalised recommendations