Redox behaviors of Fe(II/III) and U(IV/VI) studied in synthetic water and KURT groundwater by potentiometry and spectroscopy

  • Jun-Yeop Lee
  • Jae Yong Oh
  • Kirana Yuniati Putri
  • Min Hoon Baik
  • Jong-Il YunEmail author


The redox behaviors of Fe(II/III) and U(IV/VI) in both synthetic samples and natural groundwater were investigated with potentiometry, UV/VIS absorption spectroscopy, and time-resolved laser fluorescence spectroscopy. Total dissolved Fe(II/III) concentration along with presence of mixed redox couples of Fe2+/Fe3+ and Fe2+/Fe2O3(s) were revealed to be the major factors influencing on the redox potentials. Considerable discrepancies between redox potentials obtained with quantitative analysis and chemical speciation of Fe(II/III) and U(IV/VI) ions were identified in the KAERI Underground Research Tunnel groundwater. Chemical speciation of U(IV) in natural groundwater without considering relevant complexation reaction might cause relatively large uncertainties in redox potential calculations.


Redox Iron Uranium Natural groundwater 



This work was supported by the Nuclear Safety Research Program (1305032-0315-CG100) through the Korea Foundation of Nuclear Safety (KOFONS), granted financial resource from the Nuclear Safety and Security Commission (NSSC), Republic of Korea.


  1. 1.
    Kitamura A, Yamamura T, Haseb H, Yamamoto T, Moriyama H (1998) Measurement of hydrolysis species of U(VI) by time-resolved laser induced fluorescence spectroscopy. Radiochim Acta 82:147–152CrossRefGoogle Scholar
  2. 2.
    Kirishima A, Kimura T, Tochiyama O, Yoshida Z (2004) Speciation study on uranium(VI) hydrolysis at high temperatures and pressures. J Alloys Compd 374:277–285CrossRefGoogle Scholar
  3. 3.
    Grenthe I, Fuger J, Konings RJM, Lemire RJ, Muller AB, Cregu CN-T, Wanner H (1992) Chemical thermodynamics of uranium. Chemical thermodynamics, vol 1. Elsevier; OECD-NEA, AmsterdamGoogle Scholar
  4. 4.
    Guillaumont R, Fanghänel T, Neck V, Fuger J, Palmer DA, Grenthe I, Rand MH (2003) Update on the chemical thermodynamics of uranium, neptunium, plutonium, americium and technetium. Chemical thermodynamics, vol 5. Elsevier; OECD-NEA, AmsterdamGoogle Scholar
  5. 5.
    Kitamura A, Fujiwara K, Doi R, Yoshida Y (2012) Update of JAEA-TDB: additional selection of thermodynamic data for solid and gaseous phases on nickel, selenium, zirconium, technetium, thorium, uranium, neptunium plutonium and americium, update of thermodynamic data on iodine, and some modifications. JAEA, TokaiGoogle Scholar
  6. 6.
    Kumar AR, Riyazuddin P (2012) Seasonal variation of redox species and redox potentials in shallow groundwater: a comparison of measured and calculated redox potentials. J Hydrol 444–445:187–198CrossRefGoogle Scholar
  7. 7.
    Lindberg RD, Runnells DD (1984) Ground water redox reactions: an analysis of equilibrium state applied to E h measurements and geochemical modeling. Science 225:925–927CrossRefGoogle Scholar
  8. 8.
    Neck V, Altmaier M, Seibert A, Yun J-I, Marquardt CM, Fanghänel T (2007) Solubility and redox reactions of Pu(IV) hydrous oxide: evidence for the formation of PuO2+x(s, hyd). Radiochim Acta 95:193–207CrossRefGoogle Scholar
  9. 9.
    Pearsall WH, Mortimer CH (1939) Oxidation-reduction potentials in waterlogged soils, natural waters and muds. J Ecol 27(2):483–501CrossRefGoogle Scholar
  10. 10.
    Kim JI, Grambow B (1999) Geochemical assessment of actinide isolation in a german salt repository environment. Eng Geol 52:221–230CrossRefGoogle Scholar
  11. 11.
    Doyle RW (1968) The origin of the ferrous ion-ferric oxide nernst potential in environments containing dissolved ferrous iron. Am J Sci 266:840–859CrossRefGoogle Scholar
  12. 12.
    Missana T, Alonso U, Scheinost AC, Granizo N, García-Gutiérrez M (2009) Selenite retention by nanocrystalline magnetite: role of adsorption, reduction and dissolution/co-precipitation processes. Geochim Cosmochim Acta 73:6205–6217CrossRefGoogle Scholar
  13. 13.
    Cho W-J, Kwon S, Park J-H, Choi J-W (2007) KAERI underground research tunnel (KURT). J Korean Radioact Waste Soc 5(3):239–255Google Scholar
  14. 14.
    Fujiwara K, Yamana H, Fujii T, Moriyama H (2003) Determination of uranium(IV) hydrolysis constants and solubility product of UO2·xH2O. Radiochim Acta 91:345–350Google Scholar
  15. 15.
    Stookey LL (1970) Ferrozine—a new spectrophotometric reagent for iron. Anal Chem 42(7):779–781CrossRefGoogle Scholar
  16. 16.
    Gibbs CR (1976) Characterization and application of ferrozine iron reagent as a ferrous iron indicator. Anal Chem 48(8):1197–1201CrossRefGoogle Scholar
  17. 17.
    Sowder AG, Clark SB, Fjeld RA (2006) The effect of sample matrix quenching on the measurement of trace uranium concentrations in aqueous solutions using kinetic phosphorimetry. J Radioanal Nucl Chem 234(1–2):257–260Google Scholar
  18. 18.
    Stumm W, Morgan JJ (1996) Aquatic chemistry, 3rd edn. Wiley, New YorkGoogle Scholar
  19. 19.
    Baes CF, Mesmer RE (1976) The hydrolysis of cations. Wiley, New YorkGoogle Scholar
  20. 20.
    Lee J-Y, Yun J-I (2013) Formation of ternary CaUO2(CO3)32− and Ca2UO2(CO3)3(aq) complexes under neutral to weakly alkaline conditions. Dalton Trans 42(27):9862–9869CrossRefGoogle Scholar
  21. 21.
    McNaught AD, Wilkinson A (1997) IUPAC. Compendium of chemical terminology, 2nd edn. Blackwell Scientific Publications, OxfordGoogle Scholar
  22. 22.
    Schüring J, Schulz HD, Fischer WR, Böttcher J, Duijnisveld WHM (2000) Redox: fundamentals, processes and applications. Springer, BerlinCrossRefGoogle Scholar
  23. 23.
    Tyurin AG (2004) The diagram of electrochemical equilibrium of 12X18H10T Steel. Prot Met 40(3):240–248CrossRefGoogle Scholar
  24. 24.
    Nordstrom DK (2002) Aqueous redox chemistry and the behavior of iron in acid mine waters. In: Wilkin RT, Ludwig RD, Ford RG (eds) Workshop on Monitoring Oxidation-Reduction Processes for Ground-water Restoration, 2002Google Scholar
  25. 25.
    Bernhard G, Geipel G, Brendler V, Nitsche H (1996) Speciation of uranium in seepage waters of a mine tailing pile studied by time-resolved laser-induced fluorescence spectroscopy (TRLFS). Radiochim Acta 74:87–91CrossRefGoogle Scholar
  26. 26.
    Prat O, Vercouter T, Ansoborlo E, Fichet P, Perret P, Kurttio P, Salonen L (2009) Uranium speciation in drinking water from drilled wells in Southern Finland and its potential links to health effects. Environ Sci Technol 43(10):3941–3946CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  • Jun-Yeop Lee
    • 1
    • 2
  • Jae Yong Oh
    • 1
    • 3
  • Kirana Yuniati Putri
    • 1
    • 4
  • Min Hoon Baik
    • 5
  • Jong-Il Yun
    • 1
    Email author
  1. 1.Department of Nuclear and Quantum EngineeringKAISTDaejeonRepublic of Korea
  2. 2.Institute for Nuclear Waste DisposalKarlsruhe Institute of TechnologyKarlsruheGermany
  3. 3.Central Research Institute, Korea Hydro & Nuclear Power Co., Ltd.DaejeonRepublic of Korea
  4. 4.Research Center for Physics, Indonesian Institute of SciencesKomplek PUSPIPTEKTangerang SelatanIndonesia
  5. 5.Radioactive Waste Disposal Research DivisionKAERIDaejeonRepublic of Korea

Personalised recommendations