Highly efficient bio-sorption of trivalent f-elements using wild type Rhizopus arrhizus dead fungus

  • Preetam Kishor
  • Arijit SenguptaEmail author
  • V. C. Adya
  • N. A. Salvi


Wild type Rhizopus arrhizus biomass was demonstrated as highly efficient bio-sorbent for trivalent f-elements. Both Am3+ and Eu3+ were found to follow the Fruendlich isotherm through chemi-sorption. The sorption for Am3+ was found be faster compared to Eu3+ while both proceeded via pseudo-second order reaction. EDTA was found to be effective strippant whereas up to 500 kGy, the bio-sorbent showed high radiolytic stability. Luminescence employed for probing the local environment of metal ion on sorption which revealed the presence of single adsorbed species with no inner sphere water molecules. The covalency of metal–ligand bond enhanced on complexation with the bio-sorbent.


Bio-sorption Rhizopus arrhizus Isotherm Luminescence Kinetics 



The author wish to acknowledge Dr. R. M. Kadam, Head, Actinide Spectroscopy Section and Dr. P. K. Pujari, Head, Radiochemistry Division for their constant support.


Funding was provided by Bhabha Atomic Research Centre.

Supplementary material

10967_2017_5214_MOESM1_ESM.docx (120 kb)
Supplementary material 1 (DOCX 119 kb)


  1. 1.
    Madic C, Boullis B, Baron P, Testard F, Hudson MJ, Liljenzin J-O, Christiansen B, Ferrando M, Facchini A, Geist A, Modolo G, Espartero AG, De Mendoza J (2007) Futuristic back-end of the nuclear fuel cycle with the partitioning of minor actinides. J Alloys Compd 444–445:23–27CrossRefGoogle Scholar
  2. 2.
    Antony MP, Kumaresan R, Suneesh AS, Rajeswari S, Robertselvan B, Sukumaran V, Manivannan R, Syamala KV, Venkatesan KA, Srinivasan TG, Vasudeva Rao PR (2011) Development of a CMPO based extraction process for partitioning of minor actinides and demonstration with geneuine fast reactor fuel solution (155 GWd/Te). Radiochim Acta 99(4):207–215CrossRefGoogle Scholar
  3. 3.
    Serrano-Purroy D, Baron P, Christiansen B, Glatz J-P, Madic C, Malmbeck R, Modolo G (2005) First demonstration of a centrifugal solvent extraction process for minor actinides from a concentrated spent fuel solution. Sep Purif Technol 45(2):157–162CrossRefGoogle Scholar
  4. 4.
    Modolo G, Wilden A, Geist A, Magnusson D, Malmbeck R (2012) A review of the demonstration of innovative solvent extraction processes for the recovery of trivalent minor actinides from PUREX raffinate. Radiochim Acta 100(8–9):715–725CrossRefGoogle Scholar
  5. 5.
    Magnusson D, Christiansen B, Glatz J-P, Malmbeck R, Modolo G, Serrano-Purroy D, Sorel C (2009) Demonstration of a TODGA based extraction process for the partitioning of minor actinides from a PUREX raffinate. Solvent Extr Ion Exch 27:26–35CrossRefGoogle Scholar
  6. 6.
    Sengupta A, Ali Sk M, Shenoy KT (2016) Understanding the complexation of Eu3+ with TODGA, CMPO, TOPO and DMDBTDMA: Extraction, Luminescence and Theoretical investigation. Polyhedron 117:612–622CrossRefGoogle Scholar
  7. 7.
    Sengupta A, Murali MS, Thulasidas SK, Mohapatra PK (2014) A novel solvent system containing CMPO as the extractant in a diluent mixture containing n-dodecane and isodecanol for actinide partitioning runs. Hydrometallurgy 147–148:228–233CrossRefGoogle Scholar
  8. 8.
    Ansari SA, Pathak P, Mohapatra PK, Manchanda VK (2011) Aqueous partitioning of minor actinides by different processes. Sep Purif Rev 40:43–76CrossRefGoogle Scholar
  9. 9.
    Berthon L, Morel JM, Zorz N, Nicol C, Virelizier H, Madic C (2001) DIAMEX process for minor actinide partitioning: hydrolytic and radiolytic degradations of malonamide extractants. Sep Sci Technol 36(5–6):709–728CrossRefGoogle Scholar
  10. 10.
    Mathur JN, Murali MS, Nash KL (2001) Actinide partitioning–a review. Solvent Extr Ion Exch 19(3):357–390CrossRefGoogle Scholar
  11. 11.
    Singh M, Sengupta A, Murali MS, Kadam RM (2016) Comparative Study on the radiolytic stability of TBP, DHOA, Cyanex 923 and Cyanex 272 in ionic liquid and molecular diluent for the extraction of thorium. J Radioanal Nucl Chem 309(2):615–625Google Scholar
  12. 12.
    Singh M, Sengupta A, Murali MS, Kadam RM (2016) Selective separation of Uranium from nuclear waste solution by Bis(2,4,4-trimethyl) pentyl phosphinic acid in ionic liquid and molecular diluents: a comparative study. J Radioanal Nucl Chem 309(3):1199–1208CrossRefGoogle Scholar
  13. 13.
    Singh M, Sengupta A, Sk Jayabun, Ippili T (2017) Understanding the extraction mechanism, radiolytic stability and stripping behavior of thorium by ionic liquid based solvent systems: evidence of ‘ion-exchange’ and ‘solvation’ mechanism. J Radioanal Nucl Chem 311(1):195–208CrossRefGoogle Scholar
  14. 14.
    Sengupta A, Mohapatra PK, Iqbal M, Huskens J, Verboom W (2013) A diglycolamide-functionalized task specific ionic liquid (TSIL) for actinide extraction: solvent extraction, thermodynamics and radiolytic stability studies. Sep Purif Technol 118:264–270CrossRefGoogle Scholar
  15. 15.
    Fan QH, Tan XL, Li JX, Wang XK, Wu WS, Montavon G (2009) Sorption of Eu(III) on attapulgite studied by batch, XPS, and EXAFS techniques. Environ Sci Technol 43(15):5776–5782CrossRefGoogle Scholar
  16. 16.
    Kumar P, Sengupta A, Singha Deb AK, Dasgupta K, Ali Sk M (2016) Sorption behaviour of Pu4+ and PuO2 2+ on amido amine functionalized carbon nanotube: experimental and computational study. RSC Adv 6:107011–107020CrossRefGoogle Scholar
  17. 17.
    Sengupta A, Sk Jayabun, Boda A, Ali Sk M (2016) An amide functionalized task specific carbon nanotube for the sorption of tetra and hexa valent actinides: experimental and theoretical insight. RSC Adv 6:39553–39562CrossRefGoogle Scholar
  18. 18.
    Gupta NK, Sengupta A, Boda A, Adya VC, Ali Sk M (2016) Oxidation state selective sorption behavior of plutonium using N,N-dialkylamide functionalized carbon nanotubes: experimental study and DFT calculation. RSC Adv 6:78692–78701CrossRefGoogle Scholar
  19. 19.
    Philip L, Iyengar L, Venkobachar C (2000) Biosorption of U, La, Pr, Nd, Eu and Dy by Pseudomonas aeruginosa. J Indus Microbiol Biotechnol 25(1):1–7CrossRefGoogle Scholar
  20. 20.
    Gadd GM (2009) Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment. J Chem Technol Biotechnol 84(1):13–28CrossRefGoogle Scholar
  21. 21.
    Fomina M, Gadd GM (2014) Biosorption: current perspectives on concept, definition and application. Bioresour Technol 160:3–14CrossRefGoogle Scholar
  22. 22.
    Vijayaraghavan K, Sathishkumar M, Balasubramanian R (2010) Biosorption of lanthanum, cerium, europium, and ytterbium by a brown marine alga, Turbinaria Conoides. Ind Eng Chem Res 49(9):4405–4411CrossRefGoogle Scholar
  23. 23.
    Garcia SB, Nickerson WJ (1962) Isolation, composition and structure of cell walls of filamentous and yeast like forms of Mucor rouxii. Biochim Biophys Acta 58:102–119CrossRefGoogle Scholar
  24. 24.
    Crist RH, Oberhauser K, Shank N, Ngkuyen M (1981) Nature of bonding between metallic ions and algae cell walls. Environ Sci Technol 15(10):1212CrossRefGoogle Scholar
  25. 25.
    Beveridge TJ, Koval SF (1981) Binding of metals to cell envelopes of Escherichia coli K-12. Appl Environ Microbiol 42(2):325–335Google Scholar
  26. 26.
    Tsezos M, Keller DM (1983) Adsorption of radium 226 by biological origin absorbents. Biotechnol Bioeng 25(1):201–215CrossRefGoogle Scholar
  27. 27.
    Tsezos M, Volesky B (1981) Biosorption of uranium and thorium. Biotechnol Bioeng 23:583–604CrossRefGoogle Scholar
  28. 28.
    Horikoshi T, Nakajima A, Sakaguchi T (1981) Studies of the accumulation of heavy metal elements in biological systems. XIX. Accumulation of uranium by microorganisms. Eur J Appl Microbiol Biotechnol 12(2):90–96CrossRefGoogle Scholar
  29. 29.
    Weidemann DP, Tanner RD (1981) Modelling the rate of transfer of uranyl ions onto microbial cells. Enzyme Microb Technol 3:33–40CrossRefGoogle Scholar
  30. 30.
    Sengupta A, Keskar M, Sk Jayabun (2016) Sorption behaviour of metal ion on thorium tungstate synthesized by solid state route. J Radioanal Nucl Chem 310(3):979–989CrossRefGoogle Scholar
  31. 31.
    Castellan GW (1983) Physical chemistry, 3rd edn. Addison-Wesley, ReadingGoogle Scholar
  32. 32.
    Duff DG, Ross SMC, Huw VD (1988) Adsorption form solution: an experiment to illustrate the langmuir isotherm. J Chem Educ 65(9):815CrossRefGoogle Scholar
  33. 33.
    Foo KY, Hameed BH (2010) Insights into the modeling of adsorption isotherm systems. Chem Eng J 156(1):2–10CrossRefGoogle Scholar
  34. 34.
    Dada AO, Olalekan AP, Olatunya AM, Dada O (2012) Langmuir, freundlich, temkin and Dubinin-Radushkevich isotherms studies of equilibrium sorption of Zn2? Unto phosphoric acid modified rice husk. J Appl Chem 3(1):38–45Google Scholar
  35. 35.
    Sengupta A, Sk Jayabun, Pius IC, Thulasidas SK (2016) Synthesis, characterization and application of metal oxides impregnated silica for the sorption of thorium. J Radioanal Nucl Chem 309:841–852Google Scholar
  36. 36.
    Li C, Wu L, Chen L, Yuan X, Cai Y, Feng W, Liu N, Ren Y, Sengupta A, Murali MS, Mohapatra PK, Tao G, Zeng H, Ding S, Yuan L (2016) Highly efficient extraction of actinides with pillar[5]arene-derived diglycolamides in ionic liquid via a unique mechanism involving competitive host-guest interactions. Dalton Trans 45:19299–19310CrossRefGoogle Scholar
  37. 37.
    Sengupta A, Murali MS (2016) Effect of phase modifiers TBP and iso-decanol on the extraction and complexation of Eu3+ with CMPO. Sep Sci Technol 51(13):2153–2163CrossRefGoogle Scholar
  38. 38.
    Sengupta A, Wu L, Feng W, Yuan L, Natarajan V (2015) Luminescence investigation on Eu—Pillar[5]arene-based diglycolamide (DGA) complexes: nature of the complex, Judd—Ofelt calculations and effect of ligand structure. J Lumin 158:356–364CrossRefGoogle Scholar
  39. 39.
    Sengupta A, Fang Y, Yuan X, Yuan L (2015) Probing of the local environment and calculation of J.O. parameters for Eu3+ CMPO functionalized pillararene complexes by time resolved fluorescence spectroscopy. J Lumin 166:187–194CrossRefGoogle Scholar
  40. 40.
    Sengupta A, Godbole SV, Mohapatra PK, Iqbal M, Huskens J, Verboom W (2014) Judd-Ofelt parameters of diglycolamide-functionalized calix[4]arene Eu3+ complexes in room temperature ionic liquid for structural analysis: effects of solvents and ligand stereochemistry. J Lumin 148:174–180CrossRefGoogle Scholar
  41. 41.
    Mohapatra PK, Sengupta A, Iqbal M, Huskens J, Verboom W (2013) Diglycolamide-functionalized calix[4]arenes showing unusual complexation of actinide ions in room temperature ionic liquids: role of ligand structure, radiolytic stability, emission spectroscopy, and thermodynamic studies. Inorg Chem 52(5):2533–2541CrossRefGoogle Scholar
  42. 42.
    Dhami PS, Kannan R, Naik PW, Gopalakrishnan V, Ramanujam A, Salvi NA, Chattopadhyay S (2002) Biosorption of americium using biomasses of various Rhizopu species. Biotechnol Lett 24(11):885–889CrossRefGoogle Scholar
  43. 43.
    Dutta S, Mohapatra PK, Ramnani SP, Sabharwal S, Das AK, Manchanda VK (2008) Use of chitosan derivatives as solid phase extractors for metal ions. Desalination 232(1–3):234–242CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  • Preetam Kishor
    • 1
  • Arijit Sengupta
    • 2
    Email author
  • V. C. Adya
    • 2
  • N. A. Salvi
    • 3
  1. 1.Integrated Science Education and Research Centre, Visva-BharatiSantiniketanIndia
  2. 2.Radiochemistry DivisionBhabha Atomic Research CentreMumbaiIndia
  3. 3.Bio-Organic DivisionBhabha Atomic Research CentreMumbaiIndia

Personalised recommendations