Advertisement

Enrichment of lithium isotope 6Li by ion exchange resin with specific particle size

  • J. MikešEmail author
  • J. Ďurišová
  • L. Jelínek
Article

Abstract

Enrichment of lithium isotopes by displacement chromatography on strong acid cation exchanger was investigated. Narrow particle fraction of Dowex 50 WX 2 cation exchanger having diameter of 150–200 µm and total exchange capacity of 1.31 meq mL−1 was used as stationary phase. As a mobile phase, 1 mol L−1 solution of ammonium nitrate solution was used. Shape and position of Li chromatographic peak, was determined by atomic emission spectroscopy (AES). Isotope ratio was estimated by ICP–MS after 1, 8 and 10 enrichment steps. Value of separation factor for 6Li in one step was determined to be 1.027.

Keywords

Lithium Isotope separation Elution chromatography Ion exchange chromatography 

Notes

Acknowledgement

This work was supported by the financial support from specific university research (MSMT No 20/2015).

References

  1. 1.
    Coplen T, Bohlke J, De Bievre P, Ding T, Holden N, Hopple J, Krouse H, Lamberty A, Peiser H, Revesz K, Rieder S, Rosman K, Roth E, Taylor P, Vocke R, Xiao Y (2002) Isotope-abundance variations of selected elements—(IUPAC technical report). Pure Appl Chem. doi: 10.1351/pac200274101987 Google Scholar
  2. 2.
    Sears V (1992) Neutron scattering lengths and cross sectioirn. Neutron News 3(3):8CrossRefGoogle Scholar
  3. 3.
    Nishizawa K, Watanabe H, Ishino SI, Shinagawa M (1984) Lithium isotope-separation by cryptand (2b,2,1) polymer. J Nucl Sci Technol. doi: 10.3327/jnst.21.133 Google Scholar
  4. 4.
    Zaghloul M, Sze D, Raffray A (2003) Thermo-physical properties and equilibrium vapor-composition of lithium fluoride-beryllium fluoride (2LiF/BeF2) molten salt. Fus Sci Technol 44(2):344–350Google Scholar
  5. 5.
    Casini G (1983) Progress in studies of li17pb83 as liquid breeder for fusion-reactor blankets. Nucl Technol 4(2):1228–1232Google Scholar
  6. 6.
    Lewis G, Macdonald R (1936) The separation of lithium isotopes. J Am Chem Soc. doi: 10.1021/ja01303a045 Google Scholar
  7. 7.
    Okuyama K, Okada I, Saito N (1973) The isotope effects in the isotope exchange equilibria of lithium in the amalgam-solution systém. J Inorg Nucl Chem. doi: 10.1016/0022-1902(73)80520-2 Google Scholar
  8. 8.
    Taylor T, Urey H (1937) On the electrolytic and chemical exchange methods for the separation of the lithium isotopes. J Chem Phys. doi: 10.1063/1.1750079 Google Scholar
  9. 9.
    Glueckauf E, Barker K, Kitt G (1949) Theory of chromatography.8. the separation of lithium isotopes by ion exchange and of neon isotopes by low-temperature adsorption columns. Discuss Faraday Soc 7:199–213CrossRefGoogle Scholar
  10. 10.
    Symons EA (1985) Lithium isotope-separation—a review of possible techniques. Sep Sci Technol. doi: 10.1080/01496398508060696 Google Scholar
  11. 11.
    Samuelson O (1963) Ion exchange separations in analytical chemistry. Wiley, New YorkGoogle Scholar
  12. 12.
    Cornish FW (1958) The practical application of chromatographic theory to analytical and preparative separations by ion-exchange elution. Analyst. doi: 10.1039/an9588300634 Google Scholar
  13. 13.
    Djurfeldt R, Samuelson O (1950) Utilization of ion exchangers in analytical chemistry 15. Acta Chem Scand. doi: 10.3891/acta.chem.scand.04-0165 Google Scholar
  14. 14.
    Ergun S (1952) Fluid flow through packed columns. Chem Eng Prog 48(2):89–94Google Scholar
  15. 15.
    Macdonald IF, El-Sayed MS, Mow K, Dullien FAL (1979) Flow through porous media—the Ergun equation revisited in. Eng Chem Fundam. doi: 10.1021/i160071a001 Google Scholar
  16. 16.
    Lee D, Begun G (1958) The enrichment of lithium isotopes by ion-exchange chromatography. I. The influence of the degree of crosslinking on the separation factor. J Am Chem Soc. doi: 10.1021/ja01519a013 Google Scholar
  17. 17.
    Yamaji K, Makita Y, Watanabe H, Sonoda A, Kanoh H, Hirotsu T, Ooi K (2001) Theoretical estimation of lithium isotopic ruduced partition function ratio for lithium ions in aqueous solution. J Phys Chem A. doi: 10.1021/jp001303i Google Scholar
  18. 18.
    Barrett J (2003) Inorganic chemistry in aqueous. The Royal Society of Chemistry, CambridgeGoogle Scholar
  19. 19.
    Kiriukhin M, Collins K (2002) Dynamic hydration numbers for biologically important ions. Biophys Chem. doi: 10.1016/S0301-4622(02)00153-9 Google Scholar
  20. 20.
    Fisher S, Kunin R (1955) Routine exchange capacity determinations of ion exchange resins. Anal Chem. doi: 10.1021/ac60103a052 Google Scholar
  21. 21.
    Osman M (1977) Glyoxal-bis-(2-hydroxyanil) as indicator for complexometric titrations of cobalt(ii), nickel(ii), manganese(ii) and silver(I) fresenius. Z Anal Chem. doi: 10.1007/bf00464035 Google Scholar
  22. 22.
    Kim D, Hong C, Kim C, Jeong Y, Jeon Y, Lee J (1997) Lithium isotope separation on an ion exchange resin having azacrown ether as an anchor group. J Radioanal Nucl Chem. doi: 10.1007/bf02034861 Google Scholar
  23. 23.
    Dong MW (2006) Modern HPLC for practicing scientists. Wiley, HobokenCrossRefGoogle Scholar
  24. 24.
    Gritti F, Guiochon G (2011) Measurement of the eddy diffusion term in chromatographic columns. I. Application to the first generation of 4.6 mm ID monolithic columns. J Chromatogr A 1218(31):5216–5227. doi: 10.1016/j.chroma.2011.05.101 CrossRefGoogle Scholar
  25. 25.
    Glueckauf E (1958) Theory of chromatography. 11. Enrichment of isotopes by chromatography. Trans Faraday Soc 54(8):1203–1205. doi: 10.1039/tf9585401203 CrossRefGoogle Scholar
  26. 26.
    Kim D (2001) Chromatographic enrichment of lithium isotopes by hydrous manganese(IV) oxide. Bull Korean Chem Soc 22(5):503–506Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  1. 1.Department of Power EngineeringUniversity of Chemistry and TechnologyPragueCzech Republic
  2. 2.Department of Geological ProcessesInstitute of Geology of the Czech Academy of SciencesPragueCzech Republic

Personalised recommendations