Various flowsheets of actinides recovery with diamides of heterocyclic dicarboxylic acids

  • Mikhail Alyapyshev
  • Vasiliy Babain
  • Lyudmila Tkachenko


Solvents on the base of diamides of heterocyclic dicarboxylic acids are promising alternatives for studied Grouped ActiNide EXtraction (GANEX) solvents. Advantage of these ligands is the possibility of simultaneous extraction not only of residual uranium and plutonium, but also minor actinides—neptunium, americium and curium. Two flowsheets on the base of diamides of heterocyclic dicarboxylic acids for separation of actinides form acidic solutions were developed, tested in laboratory scale and compared. Both flowsheets allow separation of more than 99.95% of actinides from raffinates with high content of lanthanides.


Actinides Americium Separation Polar diluents Diamides Flowsheet 



This work was partially financially supported by Government of Russian Federation, Grant 074-U01.


  1. 1.
    Adnet J-M, Miguirditchian M, Hill C, Heres X, Lecomte M, Masson M, Brossard P, Baron P (2005) Development of new hydrometallurgical processes for actinide recovery: GANEX concept. Proc. of Global-2005 Conf. paper 119Google Scholar
  2. 2.
    Warin D (2010) Future nuclear fuel cycles: prospect and challenges for actinide recycling. IOP Conf Series. doi: 10.1088/1757-899X/9/1/012063 Google Scholar
  3. 3.
    Miguirditchian M, Sorel C, Cames B, Bisel I, Baron P, Espinoux D, Calor J-N, Viallesoubranne C, Lorrain B, Masson M (2009) HA demonstration in the Atalante facility of the GANEX 1st cycle for the selective extraction of uranium from HLW. Proc. of Global-2009 Conf. Sustainable Options & Industrial Perspectives, The Nuclear Fuel CycleGoogle Scholar
  4. 4.
    Miguirditchian M, Roussel H, Chareyre L, Baron P, Espinoux D, Calor J-N, Viallesoubranne C, Larraine B, Masson M (2009) HA demonstration in the Atalante facility of the GANEX 2nd cycle for the grouped TRU extraction. Proc. of Global-2009 Conf. (The Nuclear Fuel Cycle: Sustainable Options & Industrial Perspectives)Google Scholar
  5. 5.
    Aneheim E, Ekberg C, Fermvik A, Foreman M, Retegan T, Skarnmark GA (2010) TBP/BTBP-based GANEX separation process—part 1: feasibility. Solv Extr Ion Exch 28:437–458CrossRefGoogle Scholar
  6. 6.
    Aneheim E, Ekberg C, Fermvik A, Foreman M, Grűner B, Hájková Z, Kvičalová M (2011) A TBP/BTBP-based GANEX separation process—part 2: ageing, hydrolytic, and radiolytic stability. Solv Extr Ion Exch 29:157–175CrossRefGoogle Scholar
  7. 7.
    Aneheim E, Ekberg C, Foreman MRS (2013) A TBP/BTBP-based GANEX separation process—part 3: fission product handling. Solv Extr Ion Exch 31:237–252CrossRefGoogle Scholar
  8. 8.
    Löfström-Engdahl E, Aneheim E, Ekberg C, Foreman M, Skarnemark G (2013) Comparison of the extraction as a function of time in two GANEX solvents: influence of metal loading, interfacial tension, and density. Solv Extr Ion Exch 31:604–616CrossRefGoogle Scholar
  9. 9.
    Aneheim E, Ekberg C, Foreman MRS, Löfström-Engdahl E, Mabile N (2012) Studies of a solvent for GANEX applications containing CyMe4-BTBP and DEHBA in cyclohexanone sep. Sci Technol 47:663–669Google Scholar
  10. 10.
    Bell K, Carpentier C, Carrott M, Geist A, Gregson C, Hérès X, Magnusson D, Malmbeck R, McLachlan F, Modolo G, Müllich U, Sypula M, Taylor R, Wilden A (2012) Progress towards the development of a new GANEX process. Procedia Chem 7:392–397CrossRefGoogle Scholar
  11. 11.
    Carrot MJ, Gregson CR, Taylor RJ (2013) Neptunium extraction and stability in the GANEX solvent: 0.2 M TODGA/0.5 M DMDOHEMA/kerosene. Solv Extr Ion Exch 31:463–482CrossRefGoogle Scholar
  12. 12.
    Carrott M, Bell K, Brown J, Geist A, Gregson C, Hères X, Maher C, Malmbeck R, Mason C, Modolo G, Müllich U, Sarsfield M, Wilden A, Taylor R (2014) Development of a new flowsheet for co-separating the transuranic actinides: the “EURO-GANEX” process. Solv Extr Ion Exch 32:447–467CrossRefGoogle Scholar
  13. 13.
    Hudson MJ, Harwood LM, Laventine DM, Lewis FW (2013) Use of soft heterocyclic N-donor ligands to separate actinides and lanthanides. Inorg Chem 52:3414–3428CrossRefGoogle Scholar
  14. 14.
    Marie C, Miguirditchian M, Guillaneux D, Bisson J, Pipelier M, Dubreuil D (2011) New bitopic ligands for the group actinide separation by solvent extraction. Solv Extr Ion Exch 29:292–315CrossRefGoogle Scholar
  15. 15.
    Alyapyshev M, Babain V, Tkachenko L (2014) Amides of heterocyclic carboxylic acids as novel extractants for high-level waste treatment. Radiochemistry 56:565–574CrossRefGoogle Scholar
  16. 16.
    Yu Alyapyshev M, Babain VA, Tkachenko LI, Eliseev II, Didenko AV, Petrov ML (2011) Dependence of extraction properties of 2,6-dicarboxypyridine diamides on extractant structure. Solv Extr Ion Exch 29:619–636CrossRefGoogle Scholar
  17. 17.
    Kirsanov DO, Borisova NE, Reshetova MD, Ivanov AV, Korotkov LA, Eliseev II, Alyapyshev MYu, Spiridonov IG, Legin AV, Vlasov YuG, Babain VA (2012) Novel diamides of 2,2'-dipyridyl-6,6'-dicarboxylic acid: synthesis, coordination properties, and possibilities of use in electrochemical sensors and liquid extraction. Russ Chem Bull Intern Ed 61:881–890CrossRefGoogle Scholar
  18. 18.
    Galletta M, Scaravaggi S, Macerata E, Famulari A, Mele A, Panzeri W, Sansone F, Casnati A, Mariani M (2013) 2,9-Dicarbonyl-1,10-phenanthroline derivatives with an unprecedented Am(III)/Eu(III) selectivity under highly acidic conditions. Dalton Trans 42:16930–16938CrossRefGoogle Scholar
  19. 19.
    Xiao C-L, Wang C-Z, Yuan L-Y, Li B, He H, Wang S, Zhao Y-L, Chai Z-F, Shi W-Q (2014) Excellent selectivity for actinides with a tetradentate 2,9-diamide-1,10-phenanthroline ligand in highly acidic solution: a hard-soft donor combined strategy. Inorg Chem 53:1712–1720CrossRefGoogle Scholar
  20. 20.
    Merrill D, Hancock RD (2011) Metal ion selectivities of the highly preorganized tetradentate ligand 1,10-phenanthroline-2,9-dicarboxamide with lanthanide(III) ions and some actinide ions. Radiochim Acta 99:161–166CrossRefGoogle Scholar
  21. 21.
    Zhang X, Yuan L, Chai Z, Shi W (2016) A new solvent system containing N, N′-diethyl-N, N′-ditolyl-2,9-diamide-1,10-phenanthroline in 1-(trifluoromethyl)-3-nitrobenzene for highly selective UO2 2+ extraction. Sep Purif Technol 168:232–237CrossRefGoogle Scholar
  22. 22.
    Alyapyshev M, Ashina J, Dar’in D, Kenf E, Kirsanov D, Tkachenko L, Legin A, Starova G, Babain V (2016) 1,10-Phenanthroline-2,9-dicarboxamides as ligands for separation and sensing of hazardous metals. RSC Adv 73:68642–68652CrossRefGoogle Scholar
  23. 23.
    Yu Alyapyshev M, Babain VA, Tkachenko LI, Paulenova A, Popova AA, Borisova NE (2014) New diamides of 2,2′-dipyridyl-6,6′-dicarboxylic acid for actinide-lanthanide separation. Solv Extr Ion Exch 32:138–152CrossRefGoogle Scholar
  24. 24.
    Egorov GF (1986) Radiation chemistry of extraction systems. Ehnergoatomizdat, MoscowGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  • Mikhail Alyapyshev
    • 1
    • 2
  • Vasiliy Babain
    • 2
    • 3
  • Lyudmila Tkachenko
    • 4
  1. 1.Polymetal, 2St. PetersburgRussia
  2. 2.ITMO UniversitySt. PetersburgRussia
  3. 3.ThreeArc Mining Ltd.MoscowRussia
  4. 4.Khlopin Radium InstituteSt. PetersburgRussia

Personalised recommendations