Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 311, Issue 3, pp 1665–1671 | Cite as

Thorium(IV) and neptunium(V) uptake from carbonate containing aqueous solutions by HDTMA-modified natural zeolites

  • Panagiotis MisaelidesEmail author
  • David Fellhauer
  • Xavier Gaona
  • Marcus Altmaier
  • Horst Geckeis
Article

Abstract

The 232Th-uptake ([Th(IV)]° = 9.7 × 10−5 M) from carbonate solutions ([CO 3 2 ]tot = 0.25 M, 9.0 < pHc < 10.8) by raw and HDTMA-modified HEU-type zeolitic-, chabazitic- and phillipsitic-tuffs was investigated. The strong uptake by the HDTMA-tuffs at pHc≈9 was assigned to the Th(CO3) 5 6− and ThOH(CO3) 4 5− predominance. The sorption coefficients (R d) decreased with increasing pHc indicating carbonate competition. Enhanced R d values for pHc > 10.5 are likely due to ThO2(am)-precipitation. The 237Np-uptake ([Np(V)]° = 2.6 × 10−5 M) from carbonate solutions ([CO 3 2 ]tot = 0.25 and 3.0 × 10−4 M) by raw and HDTMA-modified HEU-type zeolitic tuff and pulverized pure heulandite crystals was studied under Ar-atmosphere at 6 < pHc < 11. The R d values for both elements indicated the modified tuffs potential to remove tetravalent- and pentavalent actinides from environmental matrices.

Keywords

Thorium(IV) sorption Neptunium(V) sorption HDTMA-modified tuffs Carbonate solutions 

Notes

Acknowledegements

This study was performed during a research stay of the corresponding author (P.M.) at the Institute of Nuclear Waste Disposal of the Karlsruhe Institute of Technology (INE-KIT). The funding by KIT as well as the support and the hospitality from the side of the INE Director and staff during this stage is gratefully acknowledged. The authors of this work would also like to thank Mrs. M. Böttle (INE-KIT) with her valuable assistance, Mrs. C. Walschburger and A. Kaufmann for the ICP-MS measurements, Profs. A. Filippidis and N. Kantiranis (Geology Dept., Aristotle Univ. of Thessaloniki) for the XRD characterization and the determination of the uptake ability of the chabazite/phillipsite-bearing tuff supplied by Apostolico & Tanagro and Dr. D. Schild (INE-KIT) for the XPS examination of the modified materials.

References

  1. 1.
    ATSDR, Toxicological profile for thorium (1990), Agency for Toxic Substances and Disease Registry, Atlanta, GA. http://www.atsdr.cdc.gov/toxprofiles/tp147.pdf. Assessed 1 Oct 2016
  2. 2.
    Taylor DM (1989) The biodistribution and toxicity of plutonium, americium and neptunium. Sci Total Environ 83:217–225CrossRefGoogle Scholar
  3. 3.
    Stumm W (1992) Chemistry of the solid-water interface: processes at mineral-water and particle-water interface in natural system. Wiley, New YorkGoogle Scholar
  4. 4.
    Zhao G, Wu X, Tan X, Wang X (2011) Sorption of heavy metal ions from aqueous solutions: a review. Open Colloid Sci J 4:19–31CrossRefGoogle Scholar
  5. 5.
    Geckeis H, Lützenkirchen J, Polly R, Rabung T, Schmidt M (2013) Mineral-water interface reactions of actinides. Chem Rev 113:1016–1062CrossRefGoogle Scholar
  6. 6.
    Altmaier M, Neck V, Müller R, Fanghänel T (2005) Solubility of ThO2·xH2O(am) in carbonate solution and the formation of ternary Th(IV) hydroxide-carbonate complexes. Radiochim Acta 93:83–92CrossRefGoogle Scholar
  7. 7.
    Altmaier M, Neck V, Denecke MA, Yin R, Fanghänel T (2006) Solubility of ThO2·xH2O(am) and the formation of ternary Th(IV) hydroxide-carbonate complexes in NaHCO3–Na2CO3 solutions containing 0–4 M NaCl. Radiochim Acta 94:495–500CrossRefGoogle Scholar
  8. 8.
    Choppin GR (2006) Actinide speciation in aquatic systems. Marine Chem 99:83–92CrossRefGoogle Scholar
  9. 9.
    Guillaumont R, Fanghänel J, Neck V, Fuger J, Palmer DA, Grenthe I, Rand MH (2003) Chemical thermodynamics, Vol. 5, Update on the chemical thermodynamics of uranium, neptunium, plutonium, americium and technetium, OECD, NEA-TDB, Elsevier, AmsterdamGoogle Scholar
  10. 10.
    Fellhauer D, Rothe J, Altmaier M, Neck V, Runke J, Wiss T, Fanghänel T (2016) Np(V) solubility, speciation and solid phase formation in alkaline CaCl2 solutions. Part I: experimental results. Radiochim Acta 104:355–379Google Scholar
  11. 11.
    Fellhauer D, Altmaier M, Gaona X, Lützenkirchen J, Fanghänel T (2016) Np(V) solubility, speciation and solid phase formation in alkaline CaCl2 solutions. Part II: thermodynamics and implications for source term estimations of nuclear waste disposal. Radiochim Acta 104:381–397Google Scholar
  12. 12.
    Petrov VG, Fellhauer D, Gaona X, Dardenne K, Rothe J, Kalmykov SN, Altmaier M (2016) Solubility and hydrolysis of Np(V) in dilute to concentrated alkaline NaCl solutions: formation of Na–Np(V)–OH solid phases at 22 & #xB0;C. Radiochim Acta. doi: 10.1515/ract-2016-2614 Google Scholar
  13. 13.
    Neck V, Fanghänel T, Kim JI (1997) Mixed hydroxo-carbonate complexes of neptunium(V). Radiochim Acta 77:167–175CrossRefGoogle Scholar
  14. 14.
    Misaelides P, Godelitsas A (2014) Interaction of natural zeolites with actinides and lanthanides. In: Daković A, Trgo M and Langella A (eds) Book of Abstracts of the 9th International Conference on the occurrence, properties and utilization of natural zeolites (Belgrade, Serbia 8–13 June 2014) Belgrade, ISBN: 978-86-82867-28-5, pp 157–158Google Scholar
  15. 15.
    Misaelides P (2011) Application of natural zeolites to the environmental remediation: a short review. Micropor Mesopor Mater 144:15–18CrossRefGoogle Scholar
  16. 16.
    Bowman RS (2003) Applications of surfactant-modified zeolites to environmental remediation. Micropor Mesopor Mater 61:43–56CrossRefGoogle Scholar
  17. 17.
    Dyer A, Jozefowicz LC (1992) The removal of thorium from aqueous solutions using zeolites. J Radioanal Nucl Chem 159:47–62CrossRefGoogle Scholar
  18. 18.
    Constantopoulou C, Loizidou M, Loizou Z, Spyrellis N (1994) Thorium equilibria with the sodium form of clinoptilolite and mordenite. J Radioanal Nucl Chem 178:143–151CrossRefGoogle Scholar
  19. 19.
    Misaelides P, Godelitsas A, Filippidis A, Charistos D, Anousis I (1995) Thorium and uranium uptake by natural zeolitic materials. Sci Total Environ 174:237–246CrossRefGoogle Scholar
  20. 20.
    Godelitsas A, Misaelides P, Charistos D, Filippidis A, Anousis I (1996) Interaction of HEU-type zeolite crystals with thorium aqueous solutions. Chem Erde 56:143–156Google Scholar
  21. 21.
    Misaelides P, Godelitsas A, Noli F, Kokkoris M, Harissopulos S (1996) In: Sterne PA, Gonis A, Borovoi AA (eds), Actinides and the Environment. NATO-ASI Series, Environment-Vol. 41, Kluwer, DordrechtGoogle Scholar
  22. 22.
    Godelitsas A, Armbruster T (2003) HEU-type zeolites modified by transition elements and lead. Micropor Mesopor Mater 61:3–24CrossRefGoogle Scholar
  23. 23.
    Metaxas M, Kasselouri-Rigopoulou V, Galiatsatou P, Konstantopoulou C, Oikonomou D (2003) Thorium removal by different adsorbents. J Hazard Mater 97:71–82CrossRefGoogle Scholar
  24. 24.
    Kazemian H, Modarres H, Ghasemi Mobtaker H (2003) Iranian natural clinoptilolite and its synthetic zeolite P for removal of cerium and thorium from nuclear wastewaters. J Radioanal Nucl Chem 258:551–556CrossRefGoogle Scholar
  25. 25.
    Humelnicu D, Drochioiu G, Sturza MI, Cecal A, Popa K (2006) Kinetic and thermodynamic aspects of U(VI) and Th(IV) sorption on a zeolitic volcanic tuff. J Radioanal Nucl Chem 270:637–640CrossRefGoogle Scholar
  26. 26.
    Kaygun AK, Akyil S (2007) Study of the behaviour of thorium adsorption on PAN/zeolite composite adsorbent. J Hazard Mater 147:357–362CrossRefGoogle Scholar
  27. 27.
    Baybaş D, Ulusoy U (2011) The use of polyacrylamide-aluminosilicate composites for thorium adsorption. Appl Clay Sci 51:138–146CrossRefGoogle Scholar
  28. 28.
    Humelnicu D, Dinu MV, Drăgan ES (2011) Adsorption characteristics of UO2 2+ and Th4+ ions from simulated radioactive solutions onto chitosan/clinoptilolite sorbents. J Hazard Mater 85:447–455CrossRefGoogle Scholar
  29. 29.
    Khazaei Y, Faghihian H, Kamali M (2011) Removal of thorium from aqueous solutions by sodium clinoptilolite. J Radioanal Nucl Chem 289:529–536CrossRefGoogle Scholar
  30. 30.
    Bish DL, Vaniman DT, Chipera SJ, Carey JW (2003) The distribution of zeolites and their effects on the performance of a nuclear waste repository in Yucca Mountain, Nevada, USA. Am Mineral 88:1889–1904Google Scholar
  31. 31.
    Al-Shaybe M, Khalili F (2009) Adsorption of thorium (IV) and uranium (VI) by Tulul al-Shabba zeolitic tuff, Jordan. JJEES 2:108–109Google Scholar
  32. 32.
    Misaelides P, Godelitsas A (2000) Ion-beam and surface analytical techniques in the study of natural zeolites: a review. In: Colella C, Mumpton FA(eds.) Natural zeolites for the third millennium. De Frede-Editore, Naples, pp 229–247Google Scholar
  33. 33.
    Cowper MM, Baker S, Chambers AV, Heath TG, Mihara M, Williams SJ (2006) In: van Iseghem P (ed) Scientific basis of nuclear waste management XXIX. Materials Research Society Symposium Proceedings, 932:925–932, MRS, PittsburghGoogle Scholar
  34. 34.
    Salinas-Pedroza MG, Olguín MT (2004) Thorium removal from aqueous solutions of Mexican erionite and X zeolite. J Radional Nucl Chem 260:115–118CrossRefGoogle Scholar
  35. 35.
    Shushkov D, Kotova O, Shuktomova I (2013) Removal of radionuclides by analcime-bearing rocks, IOP Conference series: materials science and engineering, 47(1): Article number 012041Google Scholar
  36. 36.
    Triay IR, Robinson BA, Lopez RM, Mitchell AJ, Overly CM (1993) Neptunium retardation with tuffs and ground-waters from Yucca Mountains. International high-level radioactive waste management conference, Las Vegas, NV (United States), Report LA-UR–93-436, CONF-930408-20, Los Alamos National LaboratoryGoogle Scholar
  37. 37.
    Bertetti FP, Pabalan RT, Almendarez MG (1998) In: Jenne EA (ed) Adsorption of metals by geomedia: variables, mechanisms and model applications. Academic Press, San Diego, London, Boston, New York, Sydney, Tokyo, TorontoGoogle Scholar
  38. 38.
    Triay IR, Cotter CR, Kraus SM, Huddleston MH, Chipera SJ and Bish DL (1996) Radionuclide Sorption in Yucca Mountain tuffs with J-13 well water: neptunium, uranium, and plutonium: Yucca Mountain Site Characterization Program Milestone 3338, Report LA-12956-MS, Los Alamos National LaboratoryGoogle Scholar
  39. 39.
    Triay IR, Furlano AC, Weaver SC, Chipera SJ, Bish DL (1996) Comparison of neptunium sorption results using batch and column techniques Yucca Mountain site characterization program Milestone 3041, Report LA-12958-MS, UC-814, Los Alamos National LaboratoryGoogle Scholar
  40. 40.
    Viswanathan HS, Robinson BA, Valocchi AJ, Triay IR (1998) A reactive transport model of neptunium migration from the potential repository at Yucca Mountain. J Hydrol 229:251–280CrossRefGoogle Scholar
  41. 41.
    Zhao P, Zavarin M, Leif RN, Powell BA, Singleton MJ, Lindvall RE, Kersting AB (2011) Mobilization of actinides by dissolved organic compounds at the Nevada Test Site. Appl Geochem 26:308–318CrossRefGoogle Scholar
  42. 42.
    Nitsche H, Muller A, Standifer EM, Deinhammer RS, Becraft K, Prussin T, Gatti RC (1992) Dependence of actinide solubility and speciation on carbonate concentration and ionic-strength in groundwater. Radiochim Acta 58–59:27–32Google Scholar
  43. 43.
    Olguín MT, Solache M, Iturbe JL, Bosch P, Bulbulian S (1996) Sorption of 239Np and 235U fission products by zeolite Y, mexican natural erionite, and bentonite. Sep Sci Technol 31:2021–2044CrossRefGoogle Scholar
  44. 44.
    Prikryl JD, Pabalan RT (1999) In: Wronkiewicz DJ, Lee JH (eds) Scientific Basis of Nuclear Waste Management XXII, Materials Research Society Symposium Proceedings,vol 556. MRS, Pittsburgh, pp 1036–1042Google Scholar
  45. 45.
    Filippidis A, Kantiranis N, Papastergios G, Filippidis S (2015) Safe management of municipal wastewater and sludge by fixation of pollutants in very high quality HEU-type zeolitic tuff. J Basic Appl Res Int 7:1–8Google Scholar
  46. 46.
    Schick J, Caullet P, Paillaud J-N, Patarin J, Mangold-Callarec C (2010) Batch-wise nitrate removal from water on a surfactant-modified zeolite. Micropor Mesopor Mater 132:395–400CrossRefGoogle Scholar
  47. 47.
  48. 48.
    Filippidis A, Kantiranis N (2007) Experimental neutralization of lake and stream waters from N. Greece using domestic HEU-type rich natural zeolitic material. Desalination 213:47–55CrossRefGoogle Scholar
  49. 49.
    Iucolano F, Caputo D, Colella C (2005) Permanent and safe storage of Ba2+ in hardened phillipsite-rich tuff/cement pastes. Appl Clay Sci 27:168–173Google Scholar
  50. 50.
    Cappelletti P, Colella A, Langella A, Mercurio M, Catalanotti L, Monetti V, de Gennaro B (2015) Use of surface modified natural zeolite (SMNZ) in pharmaceutical preparations Part 1. Mineralogical and technological characterization of some industrial zeolite-rich rocks. Micropor Mesopor Mater. doi: 10.1016/j.micromeso.2015.05.048 Google Scholar
  51. 51.
    Misaelides P, Godelitsas A, Haristos D, Noli F, Filippidis A, Sikalidis C (1993) Determination of the heavy metal uptake by the sodium form of heulandite using radiochemical techniques. Geologica Carpathica Clays 44:115–119Google Scholar
  52. 52.
    Altmaier M, Metz V, Neck V, Müller R, Fanghänel T (2003) Solid-liquid equilibria of Mg (OH)2 (cr) and Mg2 (OH) 3Cl4H2O (cr) in the system Mg-Na-H-OH-Cl-H2O at 25 °C. Geochim Cosmochim Acta 67:3595–3601CrossRefGoogle Scholar
  53. 53.
    Puigdomènech I (1983) INPUT, SED, and PREDOM: Computer programs drawing equilibrium diagrams, Report TRITA-OOK-3010, Department of Inorganic Chemistry, Royal Institute of Technology (KTH), StockholmGoogle Scholar
  54. 54.
    Rand M, Fuger J, Grenthe I, Neck V, Dahnpat R (2009) Chemical thermodynamics of thorium OECD, NEA-TDB Vol. 11. https://www.oecd-nea.org/science/pubs/2007/6254-DB-chemical-thermodyn-11.pdf. Accessed 1 Oct 2016

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  1. 1.Department of ChemistryAristotle UniversityThessalonikiGreece
  2. 2.Institute for Nuclear Waste Disposal (INE)Karlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations