Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 311, Issue 1, pp 893–902 | Cite as

Removal of 137Cs and 90Sr from low-level radioactive effluents by hexacyanoferrate loaded synthetic 4A type zeolite

  • D. Banerjee
  • U. Sandhya
  • Sumit Pahan
  • Annie Joseph
  • A. Ananthanarayanan
  • J. G. Shah
Article

Abstract

Copper hexacyanoferrate was imbued on pores of synthetic zeolite and the formation of needle shaped copper hexacyanoferrate microcrystals was confirmed by XRD and SEM. Batch equilibrations showed that the sorbent has good affinity for Cs and Sr which was further confirmed from column studies. It is established that a substantial amount (>8000 bed volumes) of low level waste contaminated with 137Cs and 90Sr can be treated in fixed bed column. The sorbent, owing to its low cost, simple preparation process and excellent 137Cs and 90Sr removal performance, is expected to find wide spread application in nuclear industry.

Keywords

Copper hexacyanoferrate Zeolite Removal 137Cs 90Sr Radioactive waste 

Notes

Acknowledgements

Authors thank Shri Kalyan Banerjee, AD, Nuclear Recycle Group, for encouragement during the course of the work.

References

  1. 1.
    Classification of radioactive waste: AERB safety guide (2011) AERB/NRF/SG/RW-1Google Scholar
  2. 2.
    Raj K, Prasad KK, Bansal NK (2006) Radioactive waste management practices in India. Nucl Eng Des 236:914–930CrossRefGoogle Scholar
  3. 3.
    Sinha PK, Amalraj RV, Krishnasamy V (1993) Flocculation studies on freshly precipitated copper ferrocyanide for the removal of caesium from radioactive liquid waste. Waste Manag 13:341–350CrossRefGoogle Scholar
  4. 4.
    Rao SVS, Paul B, Lal KB, Narasimhan SV, Ahmed J (2000) Effective removal of cesium and strontium from radioactive wastes using chemical treatment followed by ultra filtration. J Radioanal Nucl Chem 246:413–418CrossRefGoogle Scholar
  5. 5.
    Pancholi KC, Gaikwad GD, Rao NS, Dandekar MP, Pawaskar CS, Pente AS, Jain S (2013) Operational experience of spiral wound reverse osmosis module for treatment of low level radioactive liquid waste. Symposium on membrane separation (MEMSEP-2013), BARC, Mumbai, INDIA, Sept 16–18, 2013Google Scholar
  6. 6.
    Vincent T, Vincent C, Guibal E (2015) Immobilization of metal hexacyanoferrate ion-exchangers for the synthesis of metal ion sorbents—a mini-review. Molecules 20:20582–20613CrossRefGoogle Scholar
  7. 7.
    Semenischev VS, Voronina AV, Bykov AA (2013) The study of sorption of caesium radionuclides by “T-55” ferrocyanide sorbent from various types of liquid radioactive wastes. J Radioanal Nucl Chem 295:1753–1757CrossRefGoogle Scholar
  8. 8.
    Haas PA (1993) A review of information on ferrocyanide solids for removal of cesium from solutions. Sep Sci Technol 28:2479–2506CrossRefGoogle Scholar
  9. 9.
    Tusa EH, Paavola A, Harjula R, Lehto J (1994) Industrial scale removal of cesium with hexacyanoferrate exchanger—process realization and test run. Nucl Technol 107:279–284Google Scholar
  10. 10.
    Technical report series No. 408 (2002) Application of ion exchange process for the treatment of radioactive waste and management of spent ion-exchangers. International Atomic Energy Agency, ViennaGoogle Scholar
  11. 11.
    Chen R, Tanaka H, Kawamoto T, Asai M, Fukushima C, Na H, Kurihara M, Watanabe M, Arisaka M, Nankawa T (2013) Selective removal of cesium ions from wastewater using copper hexacyanoferrate nanofilms in an electrochemical system. Electrochim Acta 87:119–125CrossRefGoogle Scholar
  12. 12.
    Terada K, Hayakawa H, Sawada K, Kiba T (1970) Silica gel as a support for inorganic ion-exchangers for the determination of caesium-137 in natural waters. Talanta 17:955–963CrossRefGoogle Scholar
  13. 13.
    Sangvanich T, Sukwarotwat V, Wiacek RJ, Grudzien RM, Fryxell GE, Addleman RS, Timchalk C, Yantasee W (2010) Selective capture of cesium and thallium from natural waters and simulated wastes with copper ferrocyanide function-alized mesoporous silica. J Hazard Mater 182:225–231CrossRefGoogle Scholar
  14. 14.
    Lalhmunsiama CL, Tiwari D, Lee SM (2014) Immobilized nickel hexacyanoferrate on activated carbons for efficient attenuation of radio toxic Cs(I) from aqueous solutions. Appl Surf Sci 321:275–282CrossRefGoogle Scholar
  15. 15.
    Rao SVS, Narasimhan SV, Lal KB (2003) Composite CFC-PU foam ion-exchanger in the removal radio active cesium-pilot plant scale studies using simulated and actual plant waste. J Radioanal Nucl Chem 256:137–141CrossRefGoogle Scholar
  16. 16.
    Rao SVS, Lekshmi R, Mani AGS, Sinha PK (2010) Treatment of low level radioactive liquid wastes using composite ion-exchange resins based on polyurethane foam. J Radioanal Nucl Chem 283:379–384CrossRefGoogle Scholar
  17. 17.
    Mimura H, Kimura M, Akiba K, Onodera Y (1999) Selective removal of cesium from sodium nitrate solutions by potassium nickel hexacyanoferrate-loaded chabazites. Sep Sci Technol 34:17–28CrossRefGoogle Scholar
  18. 18.
    El-Kamash AM (2008) Evaluation of zeolite for the sorptive removal of Cs+ and Sr2+ ions from aqueous using batch and fixed bed column operations. J Hazard Mater 151:432–445CrossRefGoogle Scholar
  19. 19.
    Borai EH, Harjula R, Malinen L, Paajanen A (2009) Efficient removal of cesium from low-level radioactive liquid waste using natural and impregnated zeolite minerals. J Hazard Mater 172:416–422CrossRefGoogle Scholar
  20. 20.
    Nakai T, Wakabayashi S, Mimura H, Niibori Y, Tanigawa H, Ishizaki E, Kurosaki F, Matsukura M (2013) Evaluation of adsorption properties for Cs and Sr selective adsorbents-13171, WM2013 Conference, Feb 24–28, Phoenix, Arizona, USAGoogle Scholar
  21. 21.
    Valsala TP, Roy SC, Shah JG, Gabriel J, Raj K, Venugopal V (2009) Removal of radioactive cesium from low level radioactive waste (LLW) streams using cobalt ferrocyanide impregnated organic anion exchanger. J Hazard Mater 166:1148–1153CrossRefGoogle Scholar
  22. 22.
    Faghihian H, Iravani M, Moayed M, Maragheh MG (2013) Preparation of a novel PAN–zeolite nanocomposite for removal of Cs+ and Sr2+ from aqueous solutions: kinetic, equilibrium, and thermodynamic studies. Chem Engn J 222:41–48CrossRefGoogle Scholar
  23. 23.
    Banerjee D, Rao MA, Samanta SK (2007) Proceedings in Nuclear and Radiochemistry Symposium (NUCAR 2007), Vadodara, India, pp 371–372Google Scholar
  24. 24.
    Anthony RG, Dosch RG, Gu D, Philip CV (1994) Use of silicotitanates for removing cesium and strontium from defense waste. Ind Eng Chem Res 332:702–2705Google Scholar
  25. 25.
    Solbra S, Allison N, Waite S, Mikhalovsky SV, Bortun AI, Bortun LN, Clearfield A (2001) Cesium and strontium ion exchange on the framework titanium silicate M2Ti2O3-SiO4.nH2O(M = H, Na). Environ Sci Technol 35:626–629CrossRefGoogle Scholar
  26. 26.
    Samanta SK (1996) Hydrated titanium(IV) oxide as a granular inorganic sorbent for removal of radiostrontium-I. Batch equilibration studies. J Radioanal Nucl Chem 209:235–242CrossRefGoogle Scholar
  27. 27.
    Peters TB, Barnes MJ, Hobbs DT, Walker DD, Fondeur FF, Norato MA, Fink SD, Pulmano RL (2006) Strontium and actinide separations from high level nuclear waste solutions using monosodium titanate 2. Actual waste testing. Sep Sci Technol 41:2409–2427CrossRefGoogle Scholar
  28. 28.
    Merceille A, Weinzaepfel E, Barre Y, Grandjean A (2012) The sorption behaviour of synthetic sodium nonatitanate and zeolite A for removing radioactive strontium from aqueous wastes. Sep Purif Technol 96:81–88CrossRefGoogle Scholar
  29. 29.
    Valsala TP, Joseph A, Sonar NL, Sonavane MS, Shah JG, Raj K, Venugopal V (2010) Separation of strontium from low level radioactive waste solutions using hydrous manganese dioxide composite materials. J Nucl Mater 404:138–143CrossRefGoogle Scholar
  30. 30.
    Jain S, Ramaswamy M, Theyyunni TK (1994) Removal of cesium and strontium from low level active waste solutions by zeolites. BARC Report (BARC/1994/E/042)Google Scholar
  31. 31.
    Sinha PK, Panicker PK, Amalraj RV, Krishnasamy V (1995) Treatment of radioactive liquid waste containing caesium by indigenously available synthetic zeolites: a comparative study. Waste Manage 15:149–157CrossRefGoogle Scholar
  32. 32.
    Loos-Neskovic C, Ayrault S, Badillo V, Jimenez B, Garnier E, Fedoroff M, Jones DJ, Merinov B (2004) Structure of copper-potassium hexacyanoferrate (II) and sorption mechanisms of cesium. J Solid State Chem 177:1817–1828CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  • D. Banerjee
    • 1
  • U. Sandhya
    • 1
  • Sumit Pahan
    • 1
  • Annie Joseph
    • 1
  • A. Ananthanarayanan
    • 1
  • J. G. Shah
    • 1
  1. 1.Process Development DivisionBhabha Atomic Research CentreMumbaiIndia

Personalised recommendations