Journal of Radioanalytical and Nuclear Chemistry

, Volume 311, Issue 2, pp 1135–1141 | Cite as

The importance of glyceraldehyde radiolysis in chemical evolution

  • J. Cruz-Castañeda
  • E. Aguilar-Ovando
  • T. Buhse
  • S. Ramos-Bernal
  • A. Meléndez-López
  • C. Camargo-Raya
  • C. Fuentes-Carreón
  • A. Negrón-Mendoza
Article

Abstract

Studies in chemical evolution are intended to demonstrate how compounds of biological importance are generated from substances that could have been found in abiotic conditions on the primitive Earth or in extraterrestrial environments. In this context, the aim of the present work was to examine the behavior of dl-glyceraldehyde in both aqueous solution and solid samples under gamma irradiation. We irradiated dl-glyceraldehyde at different doses and temperatures with a gamma source; even at low doses and temperature (77 K), free radicals were detected. Among the products formed were ethylene glycol and glycolaldehyde. Some sugar-like compounds were also detected.

Keywords

Gamma irradiation Glyceraldehyde Chemical evolution Primitive Earth 

References

  1. 1.
    Miller SL, Orgel L (1974) The origins of life on earth. Prentice-Hall Inc, Eagle CliffsGoogle Scholar
  2. 2.
    Weber AL, Pizzarello S (2006) The peptide-catalyzed stereospecific synthesis of tetroses: a possible model for prebiotic molecule evolution. PNAS 103:12713–12717CrossRefGoogle Scholar
  3. 3.
    Draganic IG, Draganic ZD, Adloff JP (1990) Radiation and radioactivity. CRC Press Inc, Boca RatonGoogle Scholar
  4. 4.
    Draganic I, Draganic Z (1998) Radiation-chemical approaches to comets and interstellar dust. J Chim Physique 85:55–61Google Scholar
  5. 5.
    Mosqueira FG, Albarrán G, Negrón-Mendoza A (1996) A review of conditions affecting the radiolysis due to 40K on nucleic acid bases and their derivatives adsorbed on clay minerals: implications in prebiotic chemistry. Origins Life Evol Bios 26:75–94CrossRefGoogle Scholar
  6. 6.
    Negrón-Mendoza A, Albarrán G (1993) In: Chela-Flores J, Ponnamperuma C (eds) Chemical evolution: origin of life. Deepak Publishing, Jalandhar, pp 147–235Google Scholar
  7. 7.
    Cataldo F, Ursini O, Angelini G, Iglesias-Groth S, Manchado A (2011) Radiolysis and radioracemization of 20 amino acids from the beginning of the solar system. Rend Fis Acc Lincei 22:81–94CrossRefGoogle Scholar
  8. 8.
    Draganic IG, Draganic ZD (1971) The radiation chemistry of water. Academic Press, New YorkGoogle Scholar
  9. 9.
    Kochetkov NK, Kudrjashov LI, Chlenov MA (1979) Radiation chemistry of carbohydrates. Elsevier Ltd, AmsterdamGoogle Scholar
  10. 10.
    Nair V, O’Neil CL, Wang PG (2008) Malonaldehyde, encyclopedia of reagents for organic synthesis. Wiley, New YorkGoogle Scholar
  11. 11.
    Kwon T, Watts B (1963) Determination of malonaldehyde by ultraviolet spectrophotometry. J Food Sci 28:627–630CrossRefGoogle Scholar
  12. 12.
    Steenken S, Schulte-Frohlinde D (1973) Fragmentation of radicals derived from glycolaldehyde and glyceraldehyde in aqueous solution. an EPR study. Tetrahedron Lett 9:653–654CrossRefGoogle Scholar
  13. 13.
    Negron-Mendoza A, Ramos-Bernal S (2004) In: Seckbach J (ed) Cellular origin, life in extreme habitats and astrobiology. Springer, Berlin, pp 181–194Google Scholar
  14. 14.
    Jørgensen JK, Favre C, Bisschop SE, Bourke TL, van Dishoeck EF, Schmalzl M (2012) Detection of the simplest sugar, glycoladehyde, in a solar-type protostar with ALMA. Ap JL 757:L4CrossRefGoogle Scholar
  15. 15.
    Meinert C, Myrgorodska I, De Marcellus P, Buhse T, Nahon L, Hoffmann SV, Le Sergeant d’Hendecourt L, Meierhenrich UJ (2016) Ribose and related sugars from ultraviolet irradiation of interstellar ice analogs. Science 352:208–212CrossRefGoogle Scholar
  16. 16.
    Scherz H (1970) Formation of deoxycompounds and malonaldehyde in irradiated aqueous solutions of carbohydrates and related compounds. Rad Res 43:12–24CrossRefGoogle Scholar
  17. 17.
    Steenken S (1979) Oxidation of phenolates and phenylenediamines by 2-alkononyl radicals produced from 1, 2-dihydroxy- and 1-hydroxy-2-alkoxyalkyl radicals. Phys Chem 83:595–599CrossRefGoogle Scholar
  18. 18.
    von Sonntag C (1980) In: Tipson RS, Horton D (eds) Advances in carbohydrate chemistry and biochemistry. Academic Press, NY, pp 7–77Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  • J. Cruz-Castañeda
    • 1
    • 2
  • E. Aguilar-Ovando
    • 1
    • 3
  • T. Buhse
    • 3
  • S. Ramos-Bernal
    • 1
  • A. Meléndez-López
    • 1
    • 2
  • C. Camargo-Raya
    • 1
  • C. Fuentes-Carreón
    • 1
    • 4
  • A. Negrón-Mendoza
    • 1
  1. 1.Instituto de Ciencias NuclearesUniversidad Nacional Autónoma de MéxicoMexico CityMéxico
  2. 2.Programa de Maestría y Doctorado en Ciencias QuímicasUNAMMexico CityMéxico
  3. 3.Centro de Investigaciones QuímicasUniversidad Autónoma del Estado de MorelosCuernavacaMéxico
  4. 4.Facultad de CienciasUniversidad Nacional Autónoma de MéxicoMexico CityMéxico

Personalised recommendations