Journal of Radioanalytical and Nuclear Chemistry

, Volume 311, Issue 1, pp 465–472 | Cite as

Uranium-bearing francolites present in organic-rich limestones of NW Greece: a preliminary study using synchrotron radiation and fission track techniques

  • I. T. Tzifas
  • U. A. Glasmacher
  • P. Misaelides
  • A. Godelitsas
  • P. N. Gamaletsos
  • J. Goettlicher
  • D. Françoso de Godoy


Synchrotron radiation techniques (μ-XRF and μ-XANES) were applied to the study of organic-rich phosphatized limestones of NW Greece (Epirus). The results revealed uranium accumulation in areas of the material containing, among others, carbonate apatite (francolite) and organic matter. The UL 3-edge of μ-XANES spectra showed that uranium was present in tetravalent form. U-bearing francolite crystals were separated from the rock and characterized by Raman spectroscopy and microprobe. The analysis of the crystals also indicated the presence of sodium and sulfur. The uranium presence in the crystals was also visualized, after neutron irradiation and etching, by the observation of the fission tracks.


Uranium Francolite Phosphatized limestones Raman μ-XRF μ-XANES Fission tracks 



The study was partly supported by a DAAD-(UNIBRAL: 56265621) and a BMBF-Grant (05K13VH1) provided to the author U.A. Glasmacher. Synchrotron radiation beams were provided by the ANKA facility within the frame of the ANS-114 research project. The assistance of Drs. R. Steininger and T. J. Mertzimekis as well as of the ANKA technical staff during the experiments is thankfully acknowledged. We also thank Prof. P. C. Hackspacher for the support provided to us. Finally, many thanks to the Laboratory Manager of the Research Group Thermochronology and Archaeometry, Mrs. Margit Brückner for her assistance for the fission track measurements.


  1. 1.
    Hughes JM, Rakovan J (2002) The crystal structure of apatite, Ca5(PO4)3(F,OH,Cl). In: Kohn M, Rakovan JF, Hughes JM (eds) Phosphates: geochemical, geobiological and materials importance. Reviews in mineralogy and geochemistry, vol 48. Mineralogical Society of America, Washington DC, pp 1–12Google Scholar
  2. 2.
    Hughes JM, Rakovan J (2015) Structurally robust, chemically diverse: apatite and apatite supergroup minerals. Elements 11(3):165–170CrossRefGoogle Scholar
  3. 3.
    Pan Y, Fleet ME (2002) Composition of apatite-group minerals: substitution mechanisms and controlling factors. In: Kohn M, Rakovan JF, Hughes JM (eds) Phosphates: geochemical, geobiological and materials importance. Reviews in mineralogy and geochemistry. Mineralogical Society of America, Washington DC, pp 13–49Google Scholar
  4. 4.
    Pasero M, Kampf AR, Ferraris C, Pekov IV, Rakovan J, White T (2010) Nomenclature of apatite supergroup minerals. Eur J Miner 22:163–179CrossRefGoogle Scholar
  5. 5.
    Rakovan J, Reeder RJ, Elzinga EJ, Cherniak D, Tait CD, Morris DE (2002) Characterization of U(VI) in the apatite structure by X-ray absorption spectroscopy. Environ Sci Technol 36(14):3114–3117CrossRefGoogle Scholar
  6. 6.
    Luo Y, Rakovan J, Elzinga E, Pan Y, Lupulescu MV, Hughes J (2011) Crystal chemistry of Th in fluorapatite. Am Mineral 96:23–33CrossRefGoogle Scholar
  7. 7.
    Luo Y, Rakovan J, Hughes J, Pan Y (2009) Site preference of U and Th in Cl, F. Sr apatites Am Miner 94:345–351CrossRefGoogle Scholar
  8. 8.
    Ewing RC, Wang LM (2002) Phosphates as nuclear waste forms. In: Kohn M, Rakovan JF, Hughes JM (eds) Phosphates: geochemical, geobiological and materials importance. Reviews in mineralogy and geochemistry, vol 48. Mineralogical Society of America, Washington D.C, pp 673–699Google Scholar
  9. 9.
    Borkiewicz O, Rakovan J, Cahill C (2010) Time resolved in situ studies of apatite formation pathways in aqueous solutions. Am Miner 95:1224–1236CrossRefGoogle Scholar
  10. 10.
    Kanai Y (2003) Characterization of U series nuclides in geological materials by selective leaching method. J Radioanal Nucl Chem 255(2):319–323CrossRefGoogle Scholar
  11. 11.
    Moore CR, Gasser M, Awwad N, Holt CK, Salas MF, Hasan A, Hasan AM, Zhao H, Sanchez AC (2005) Sorption of plutonium(VI) by hydroxyapatite. J Radioanal Nucl Chem 263(1):1588–2780CrossRefGoogle Scholar
  12. 12.
    Galamboš M, Suchánek P, Rosskopfová O (2012) Sorption of anthropogenic radionuclides on natural and synthetic inorganic sorbents. J Radioanal Nucl Chem 293(2):613–633CrossRefGoogle Scholar
  13. 13.
    Popa K (2013) Sorption of uranium on lead hydroxyapatite. J Radioanal Nucl Chem 298(3):1527–1532CrossRefGoogle Scholar
  14. 14.
    Hughes JM, Cameron M, Mariano AN (1991) Rare earth element ordering and structural variations in natural rare- earth bearing apatites. Am Miner 76:1165–1173Google Scholar
  15. 15.
    Glasmacher U, Zentilli M, Grist AM (1997) Apatite Fission Track thermochronology of Paleozoic sandstones and the Hill-intrusion at the northern part of the Linksrheinisches Schiefergebirge, Germany. In: Van den Haute P, De Corte F (eds) Advances in Fission-Track Geochronology. Kluwer Academic Publishers, Schiefergebirge, pp 151–172Google Scholar
  16. 16.
    Glasmacher UA, Mann U, Wagner GA (2002) Thermotectonic evolution of the Barrandian, Czech Republic, as revealed by apatite fission-track analysis. Tectonophysics 359:381–402CrossRefGoogle Scholar
  17. 17.
    Lisker F, Ventura B, Glasmacher UA (2009) Apatite thermochronology in modern geology. Spec Pub Geol Soc London 324:1–23CrossRefGoogle Scholar
  18. 18.
    Sandell EB, Hey MH, McConnell D (1939) The composition of francolite. Mineral Mag 25:395–401CrossRefGoogle Scholar
  19. 19.
    McConnell D (1970) Apatite: its crystal chemistry, mineralogy, utilization and geologic and biologic occurrences. In: Bentor YE (ed) Applied mineralogy, vol 5. Springer, New York, p 111Google Scholar
  20. 20.
    McArthur JM (1985) Francolite geochemistry compositional controls during formation, diagenesis, metamorphism and weathering. Geochim Cosmochim Acta 49:23–35CrossRefGoogle Scholar
  21. 21.
    Perdikatsis B (1991) X-ray powder diffraction study of francolite by the Rietveld method. Mater Sci Forum 79–82:809–814CrossRefGoogle Scholar
  22. 22.
    McClellan GH (1980) Mineralogy of carbonate-fluorapatite. J Geol Soc Lond 137:675–681CrossRefGoogle Scholar
  23. 23.
    McClellan GH, Van Kauwenbergh SJ (1990) Mineralogy of sedimentary apatites. In: Notholt AJG, Jarvis I (eds) Phosphorite research and development, vol 52. Geological Society Special Publication, London, pp 23–31Google Scholar
  24. 24.
    Binder G, Troll G (1989) Coupled anion substitution in natural carbon-bearing apatites. Contrib Miner Petrol 101(4):394–401CrossRefGoogle Scholar
  25. 25.
    Schuffert JD, Kastner M, Emanuelle G, Jahnke RA (1990) Carbonate-ion substitution in francolite: a new equation. Geochim Cosmochim Acta 54:2323–2328CrossRefGoogle Scholar
  26. 26.
    Baumer A, Ganteaume M, Klee W (1985) Determination of OH ions in hydroxyfluorapatite by infrared spectroscopy. Bull Miner 108:145–152Google Scholar
  27. 27.
    Ivanova TI, Frank-Kamenetskaya OV, Kol’tsov AB, Ugolkov VL (2001) Crystal structure of calcium-deficient carbonated hydroxyapatite. thermal decomposition. J Solid State Chem 160:340–349CrossRefGoogle Scholar
  28. 28.
    Fleet ME, Liu X (2004) Location of type B carbonate ion in type A-B carbonate apatite synthesized at high pressure. J Solid State Chem 177:3174–3182CrossRefGoogle Scholar
  29. 29.
    Fleet ME, Liu X (2003) Carbonate apatite type A synthesized at high pressure: new space group P3 and orientation of channel carbonate ion. J Solid State Chem 174:412–417CrossRefGoogle Scholar
  30. 30.
    Fleet ME, Liu X (2005) Local structure of channel ions in carbonate apatite. Biomaterials 26:7548–7554CrossRefGoogle Scholar
  31. 31.
    Fleet ME, Liu X (2008) Accommodation of the carbonate ion in fluoapatite synthesized at high pressure. Am Miner 93:1460–1469CrossRefGoogle Scholar
  32. 32.
    Petkova V, Yaneva V (2010) Thermal behavior and phase transformations of nanosized carbonate apatite (Syria). J Therm Anal Calorim 99:179–189CrossRefGoogle Scholar
  33. 33.
    Kostova V, Petrova NL, Petkova V (2013) The high energy milling effect on positional redistribution of CO3-ions in the structure of sedimentary apatite. Bul Chem Commun 45(4):601–606Google Scholar
  34. 34.
    Pasteris JD, Yoder CH, Wopenka B (2014) Molecular water in nominally unhydrated carbonated hydroxylapatite: the key to a better understanding of bone mineral. Am Miner 99:16–27CrossRefGoogle Scholar
  35. 35.
    Peroos S, Du Z, De Leeuw NH (2006) A computer modeling study of the uptake, structure and distribution of carbonate defects in hydroxyl-apatite. Biomaterials 27:2150–2161CrossRefGoogle Scholar
  36. 36.
    Goldenberg E, Wilt Z, Schermerhorn D, Pasteris JD, Yoder CH (2015) Structural effects on incorporated water in carbonated apatites. Am Miner 100:274–280CrossRefGoogle Scholar
  37. 37.
    Tzifas ITr, Godelitsas A, Magganas A, Androulakaki E, Eleftheriou G, Mertzimekis T, Perraki M (2014) Uranium-bearing phosphatized limestones of NW Greece. J Geochem Explor 143:62–73CrossRefGoogle Scholar
  38. 38.
    Tsikos H, Karakitsios V, Van Breugel Y, Walsworth-Bell B, Bombardiere L, Petrizzo MR, Sinninghe Damst JS, Schouten S, Erba E, Silva IP, Farrimond P, Tyson RV, Jenkyns HC (2004) Organic-carbon deposition in the cretaceous of the ionian basin, NW Greece: the paquier event (OAE 1b) revisited. Geol Mag 141:401–416CrossRefGoogle Scholar
  39. 39.
    Kafousia N, Karakitsios V, Mattioli E, Kenjo S, Jenkyns HC (2014) The toarcian oceanic anoxic event in the ionian zone, Greece. Palaeogeogr Palaeocl 393:135–145CrossRefGoogle Scholar
  40. 40.
    Robertson AHF, Clift PD, Degnan PJ, Jones G (1991) Palaeogeographic and palaeotectonic evolution of the eastern mediterranean neotethys. Palaeogeogr Palaeocl 87:289–343CrossRefGoogle Scholar
  41. 41.
    Key parameters of the SUL-X beamline. ANKA facility, Karlsruhe Institute of Technology, Karlsruhe.
  42. 42.
    Antonakos A, Liarokapis E, Leventouri T (2007) Micro-Raman and FT-IR studies of synthetic and natural apatites. Biomaterials 28:3043–3054CrossRefGoogle Scholar
  43. 43.
    Penel G, Leroy G, Bres E (1998) Micro Raman spectral study of the PO4 and CO3 vibrational modes in synthetic and biological apatites. Calcifi Tissue Int 63(6):475–481CrossRefGoogle Scholar
  44. 44.
    Suess E (1970) Interaction of organic compounds with calcium carbonate-I. Association phenom geochemical implications. Geochim Cosmochim Acta 34:157–168CrossRefGoogle Scholar
  45. 45.
    Suess E (1973) Interaction of organic compounds with calcium carbonate-II. Organo carbonate association in recent sediments. Geochim Cosmochim Acta 37:2435–2447CrossRefGoogle Scholar
  46. 46.
    Barbarand J, Hurford T, Carter A (2002) Variation in apatite fission-track length measurement: implications for thermal history modeling. Chem Geol 198:77–106CrossRefGoogle Scholar
  47. 47.
    Barbarand J, Wood Carter A, Hurford TI (2003) Compositional and structural control of fission-track annealing in apatite. Chem Geol 198:107–137CrossRefGoogle Scholar
  48. 48.
    Rakovan J, Hughes JM (2000) Strontium in the apatite structure: strontian fluorapatite and belovite-(Ce). Can Miner 38:839–845CrossRefGoogle Scholar
  49. 49.
    Soudry D, Ehrlich S, Yoffe O, Nathan Y (2002) Uranium oxidation state and related variations in geochemistry of phosphorites from the Negev (southern Israel). Chem Geol 189(3–4):213–230CrossRefGoogle Scholar
  50. 50.
    Altschuler ZS, Clarke RS, Young EJ (1958) Geochemistry of uranium in apatite and phosphorite. US Geol Surv Prof Pap 314(D):45–90Google Scholar
  51. 51.
    Baturin GN, Kochenov AV (2001) Uranium in phosphorites. Lithol Miner Resour 36(4):303–321CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  • I. T. Tzifas
    • 1
  • U. A. Glasmacher
    • 2
  • P. Misaelides
    • 1
  • A. Godelitsas
    • 3
  • P. N. Gamaletsos
    • 4
    • 5
  • J. Goettlicher
    • 4
  • D. Françoso de Godoy
    • 6
  1. 1.Department of ChemistryAristotle University of ThessalonikiThessalonikiGreece
  2. 2.Research Group Thermochronology and Archaeometry, Institute of Earth SciencesUniversity of HeidelbergHeidelbergGermany
  3. 3.Department of Geology and GeoenvironmentUniversity of AthensZografouGreece
  4. 4.ANKA Synchrotron Radiation FacilityKarlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany
  5. 5.Center for Electron NanoscopyTechnical University of DenmarkKongens LyngbyDenmark
  6. 6.Departamento de Petrologia e Metalogenia, Instituto de Geociências e Ciências ExatasUniversidade Estadual Paulista – Julio de Mesquita FilhoRio ClaroBrazil

Personalised recommendations