Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 310, Issue 1, pp 201–205 | Cite as

Spectrophotometric investigation of plutonium(IV) oxidation by cerium(IV)

  • Xiaowei YiEmail author
  • Haijun Dang
  • Bin Zeng
  • Jianfeng Lin
  • Mei Li
  • Gongshuo Yu
Article
  • 220 Downloads

Abstract

In order to prepare a pure Pu(VI) solution, the oxidation of Pu(IV) to Pu(VI) by cerium(IV) was investigated with a UV–Visible spectrophotometer equipped with a 0.5 m liquid core waveguide. The degree of the oxidation of Pu(IV) was studied as function of the Ce(IV) concentration and the reaction time. The study showed that in 1 M HNO3 solution, 1.2 × 10−3 M Ce(IV) can oxidize Pu(IV) with concentration of 4.3 × 10−5 M to Pu(VI) completely within 40 min, while 2.4 × 10−3 M Ce(IV) can do it within 15 min. The oxidation reaction of Pu(IV) by Ce(IV) is a first order process with respect to Pu(IV) according to the data analysis. From a thermodynamic point of view, the reaction can proceed almost completely provided that amount of the Ce(IV) is greater than stoichiometric amount.

Keywords

Plutonium(IV) Plutonium(VI) Cerium(IV) UV–Vis spectroscopy Oxidation 

References

  1. 1.
    Cleveland JM (1970) The chemistry of plutonium. Gordon and Breach Science Publishers, New YorkGoogle Scholar
  2. 2.
    Allard B, Olofsson U, Torstenfelt B (1984) Environmental actinide chemistry. Inorg Chim Acta 94:205–221CrossRefGoogle Scholar
  3. 3.
    Choppin GR (1988) Humics and radionuclide migration. Radiochim Acta 44(45):23–28Google Scholar
  4. 4.
    Cohen D (1961) Electrochemical studies of plutonium ions in perchloric acid solution. J Inorg Nucl Chem 18:207–210CrossRefGoogle Scholar
  5. 5.
    Wilson RE, Hu YJ, Nitsche H (2005) Detection and quantification of Pu(III, IV, V, VI) using a 1.0 m liquid core waveguide. Radiochim Acta 93:203–206CrossRefGoogle Scholar
  6. 6.
    Lee MH, Park YJ, Kim WH (2007) Absorption spectroscopic properties for Pu(III, IV and VI) in nitric and hydrochloric acid media. J Radioanal Nucl Chem 273:375–382CrossRefGoogle Scholar
  7. 7.
    Cho HR, Jung EC, Park KK (2010) Effect of reduction on the stability of Pu(VI) hydrolysis species. Radiochim Acta 98:555–561CrossRefGoogle Scholar
  8. 8.
    Silver GL (1967) Determination of plutonium oxidation states in dilute nitric acid by complementary tristimulus colorimetry. Talanta 14:637–641CrossRefGoogle Scholar
  9. 9.
    Spevackova V, Guichard C, Cauchetier P (1978) The effect of americium-241 on the determination of plutonium by the silver(II) oxide method. Anal Chim Acta 96:189–194CrossRefGoogle Scholar
  10. 10.
    Seils CA, Meyer RJ, Larsen RP (1963) Amperometric titration of plutonium(VI) with iron(II). Anal Chem 35:1673–1675CrossRefGoogle Scholar
  11. 11.
    Cauchetier P (1981) Spectrophotometric determination of plutonium after oxidation with cerium(IV). Anal Chim Acta 124:449–452CrossRefGoogle Scholar
  12. 12.
    Savage DJ, Kyffin TW (1986) Oxidative breakdown of polymeric plutonium(IV) hydroxide by cerium(IV). Polyhedron 5:743–752CrossRefGoogle Scholar
  13. 13.
    Walther C, Cho HR, Marquardt CM (2007) Hydrolysis of plutonium(IV) in acidic solutions: no effect of hydrolysis on absorption-spectra of mononuclear hydroxide complexes. Radiochim Acta 95:7–16CrossRefGoogle Scholar
  14. 14.
    Weast RC (1988) Handbook of chemistry and physics. CRC Press Inc, Boca RatonGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  • Xiaowei Yi
    • 1
    Email author
  • Haijun Dang
    • 1
  • Bin Zeng
    • 1
  • Jianfeng Lin
    • 1
  • Mei Li
    • 1
  • Gongshuo Yu
    • 1
  1. 1.Northwest Institute of Nuclear TechnologyXi’anPeople’s Republic of China

Personalised recommendations