Advertisement

Simultaneous determination and uptake assessment of selected radionuclides in plants grown in substrate contaminated with U-mill tailings

  • Petra Planinšek
  • Borut Smodiš
  • Ljudmila Benedik
Article

Abstract

The aim of this study was to investigate transfer of 238U, 230Th, 226Ra and 210Pb from substrate contaminated with different amounts of uranium-mill tailings to eatable plants (radish, savoy and rocket). The applied radiochemical procedure allows for simultaneous determination of all investigated nuclides from a single sample test portion. The results obtained indicate significant linear correlation between content of the radionuclides in soil and plants as well as between content of the radionuclides in plants and pedological parameters, while contamination has no effect on photochemical efficiency and content of photosynthetic pigments in the selected plants.

Keywords

Radish Savoy Rocket NORM radionuclides Uptake 

Notes

Acknowledgments

This work was financially supported by the Slovenian Research Agency (contracts No. P2-0075 and P1-0143). The authors thank Jurana Company for performing pedological analyses. Dr. Špela Mechora from the Biotechnical Faculty, University of Ljubljana, is greatly acknowledged for determining biochemical and physiological parameters of plants.

References

  1. 1.
    Križman M, Byrne AR, Benedik L (1995) Distribution of 230Th in milling wastes from the Zirovski vrh uranium mine (Slovenia), and its radioecological implications. J Environ Radioact 26:223–235CrossRefGoogle Scholar
  2. 2.
    Vreček P, Benedik L (2002) Determination of 210Pb and 210Po in sediments, water, and plants in an area contaminated with mine waste. Mine Water Environ 21:156–159CrossRefGoogle Scholar
  3. 3.
    Tamponnet C, Martin-garin A, Gonze M, Parekh N (2008) An overview of BORIS : bioavailability of radionuclides in soils. J Environ Radioact 99:820–830CrossRefGoogle Scholar
  4. 4.
    Štrok M, Smodiš B (2012) Transfer of natural radionuclides from hay and silage to cow’s milk in the vicinity of a former uranium mine. J Environ Radioact 110C:64–68Google Scholar
  5. 5.
    Duquène L, Vandenhove H, Tack F, Meers E, Baeten J, Wannijn J (2009) Enhanced phytoextraction of uranium and selected heavy metals by Indian mustard and ryegrass using biodegradable soil amendments. Sci Total Environ 407:1496–1505CrossRefGoogle Scholar
  6. 6.
    Ebbs SD, Brady DJ, Kochian LV (1998) Role of uranium speciation in the uptake and translocation of uranium by plants. Nutrition 49:1183–1190Google Scholar
  7. 7.
    Huang JW, Blaylock MJ, Kapulnik Y, Ensley BD (1998) Phytoremediation of uranium-contaminated soils: role of organic acids in triggering uranium hyperaccumulation in plants. Environ Sci Technol 32:2004–2008CrossRefGoogle Scholar
  8. 8.
    Soudek P, Petrová S, Benesová D, Kotyza J, Vágner M, Vanková R, Vanek T (2010) Study of soil-plant transfer of 226Ra under greenhouse conditions. J Environ Radioact 101:446–450CrossRefGoogle Scholar
  9. 9.
    Liu D, Jiang W, Liu C, Xin C, Hou W (2000) Uptake and accumulation of lead by roots, hypocotyls and shoots of Indian mustard [Brassica juncea (L.)]. Bioresour Technol 71:273–277CrossRefGoogle Scholar
  10. 10.
    ATSDR (Agency for Toxic Substances and Disease Registry), toxicological profiles. http://www.atsdr.cdc.gov/. Accessed: 24 Jun 2015
  11. 11.
    Blaylock MJ, Salt DE, Dushenkob S, Zakharova O, Gussman C, Kapulnik Y, Ensley BD, Raskin I (1997) Enhanced accumulation of Pb in Indian mustard by soil- applied chelating agents. Environ Sci Technol 31:860–865CrossRefGoogle Scholar
  12. 12.
    Yoon J, Cao X, Zhou Q, Ma LQ (2006) Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci Total Environ 368:456–464CrossRefGoogle Scholar
  13. 13.
    Madruga MJ, Brogueira A, Alberto G, Cardoso F (2001) Ra bioavailability to plants at the Urgeiriça uranium mill tailings site. J Environ Radioact 54:175–188CrossRefGoogle Scholar
  14. 14.
    Štrok M, Smodiš B (2010) Fractionation of natural radionuclides in soils from the vicinity of a former uranium mine Žirovski vrh, Slovenia. J Environ Radioact 101:22–28CrossRefGoogle Scholar
  15. 15.
    Tomé FV, Vargas MJ, Sánchez AM (1994) Yields and losses at each step in preparing uranium and thorium samples for alpha spectrometry. Appl Radiat Isot 45:449–452CrossRefGoogle Scholar
  16. 16.
    Matveyeva I, Jaćimović R, Planinšek P, Smodiš B, Burkitbayev M (2016) Uptake of uranium, thorium and radium isotopes by plants growing in dam impoundment Tasotkel and the Lower Shu region (Kazakhstan). Radiochim Acta 104:51–57CrossRefGoogle Scholar
  17. 17.
    Černe M, Smodis B, Štrok M, Jaćimović R (2010) Accumulation of 226Ra, 238U and 230Th by wetland plants in a vicinity of U-mill tailings at Žirovski vrh (Slovenia). J Radioanal Nucl Chem 286:323–327CrossRefGoogle Scholar
  18. 18.
    Rodríguez PB, Tomé FV, Lozano JC (2001) Concerning the low uranium and thorium yields in the electrodeposition process of soil and sediment analyses. Appl Radiat Isot 54:29–33CrossRefGoogle Scholar
  19. 19.
    D’Antuono LF, Elementi S, Neri R (2009) Exploring new potential health-promoting vegetables: glucosinolates and sensory attributes of rocket salads and related Diplotaxis and Eruca species. J Sci Food Agric 89:713–722CrossRefGoogle Scholar
  20. 20.
    Smodiš B, Černe M, Jaćimović R, Benedik L (2015) Transfer of uranium and radium to Chinese cabbage from soil containing elevated levels of natural radionuclides. J Radioanal Nucl Chem 306:685–694CrossRefGoogle Scholar
  21. 21.
    ONORM L 1087 (2006) Chemical analysis of soils-determination of “plant-available” Phosphorus And Potassium By The Calcium-acetate-lactate (cal)-method. Osterreichisches NormungsinstitutGoogle Scholar
  22. 22.
    Soil Survey Laboratory Staff (1992) Soil survey laboratory methods manual, U.S. Department of AgricultureGoogle Scholar
  23. 23.
    SIST ISO 13878 (1999) Soil quality—determination of total nitrogen content by dry combustion (‘elemental analysis’). http://www.sist.si/ecommerce/catalog/project.aspx?id=557ec62e-84bd-4932-8bfb-a38cad8acf0e. Accessed 14 Aug 2015
  24. 24.
    SIST ISO 10390 (2006) Soil quality—determination of pH. http://www.sist.si/ecommerce/catalog/project.aspx?id=89661280-0784-40a2-8412-81e4b13cefb4. Accessed 14 Aug 2015
  25. 25.
    SIST ISO 10694 (1995) Soil quality—determination of organic and total carbon after dry combustion (elementary analysis). http://www.iso.org/iso/catalogue_detail.htm?csnumber=18782. Accessed 14 Aug 2015
  26. 26.
    Lichtenthaler HK (1988) In: Lichtenthaler HK (ed) Applications of chlorophyll fluorescene in photosynthesis research, stress physiology, hydrobiology and remote sensing. Springer, DordrechtCrossRefGoogle Scholar
  27. 27.
    Schreiber U, Bilger W, Neubauer C (1995) In: Schulze ED, Caldwell MM (eds) Ecophysiology of photosynthesis. Springer, BerlinGoogle Scholar
  28. 28.
    Mechora S, Stibilj V, Germ M (2013) The uptake and distribution of selenium in three aquatic plants grown in Se(IV) solution. Aquat Toxicol 128–129:53–59CrossRefGoogle Scholar
  29. 29.
    Hawrylak-Nowak B (2008) Changes in anthocyanin content as indicator of maize sensitivity to selenium. J Plant Nutr 31:1232–1242CrossRefGoogle Scholar
  30. 30.
    Aggarwal A, Sharma I, Tripathi BN, Munjal A, Baunthiyal M, Sharma V (2012) Metal toxicity and photosynthesis. In: Itoh S, Mohanty P, Guruprasad KN (eds) Photosynthesis: overviews on recent progress & future perspective. IK International Publishing House, New DelhiGoogle Scholar
  31. 31.
    Lichtenthaler HK, Buschmann C (2001) Chlorophylls and carotenoids: measurement and characterization by UV-Vis spectroscopy. In: Wrolstad RE, Acree TE, Decker EA, Penner MH, Reid DS, Schwartz SJ, Shoemaker CF, Smith D, Sporns P (eds) Current protocols in food analytical chemistry. John Wiley & Sons Inc, New YorkGoogle Scholar
  32. 32.
    Lichtenthaler HK, Buschmann C (2001) Extraction of phtosynthetic tissues: chlorophylls and carotenoids. In: Wrolstad RE, Acree TE, Decker EA, Penner MH, Reid DS, Schwartz SJ, Shoemaker CF, Smith D, Sporns P (eds) Current protocols in food analytical chemistry. Wiley, New YorkGoogle Scholar
  33. 33.
    Drumm H, Mohr H (1978) Mode of interaction between blue (UV) light pho- toreceptor and phytochrome in anthocyanin formation of Sorghum seedling. Photochem Photobiol 27:241–248CrossRefGoogle Scholar
  34. 34.
    Štrok M, Smodiš B, Petrinec B (2010) Natural radionuclides in sediments and rocks from Adriatic Sea. J Radioanal Nucl Chem 286:303–308CrossRefGoogle Scholar
  35. 35.
    Benedik L, Tavčar P (2001) Determination of 210Pb and 210Po in environmental samples. Acta Chim Slov 48:199–213Google Scholar
  36. 36.
    Horwitz EP (1995) Separation and preconcentration of actinides by extraction chromatography using a supported liquid anion exchanger: application to the characterization of high-level nuclear waste solutions. Anal Chim Acta 310:63–78CrossRefGoogle Scholar
  37. 37.
    Jurečič S, Benedik L, Planinšek P, Nečemer M, Kump P, Pihlar B (2014) Analysis of uranium in the insoluble residues after decomposition of soil samples by various techniques. Appl Radiat Isot 87:61–65CrossRefGoogle Scholar
  38. 38.
    IAEA (2010) Handbook of parameter values for the prediction of radionuclide transfer in terrestrial and freshwater, no. 472, IAEA (International Atomic Energy Agency), ViennaGoogle Scholar
  39. 39.
    Singh S, Malhotra R, Bajwa BS (2005) Uranium uptake studies in some plants. Radiat Meas 40:666–669CrossRefGoogle Scholar
  40. 40.
    Shtangeeva I (2010) Uptake of uranium and thorium by native and cultivated plants. J Environ Radioact 101:458–463CrossRefGoogle Scholar
  41. 41.
    Sheppard SC, Evenden WG, Pollock RJ (1989) Uptake of natural radionuclides by field and garden crops. Can J Soil Sci 69:751–767CrossRefGoogle Scholar
  42. 42.
    Vandenhove H, Van Hees M, Wouters K, Wannijn J (2007) Can we predict uranium bioavailability based on soil parameters? Part 1: effect of soil parameters on soil solution uranium concentration. Environ Pollut 145:587–595CrossRefGoogle Scholar
  43. 43.
    Bednar AJ, Medina VF, Ulmer-Scholle DS, Frey BA, Johnson BL, Brostoff WN, Larson SL (2007) Effects of organic matter on the distribution of uranium in soil and plant matrices. Chemosphere 70:237–247CrossRefGoogle Scholar
  44. 44.
    Chang P, Kim KW, Yoshida S, Kim SY (2005) Uranium accumulation of crop plants enhanced by citric acid. Environ Geochem Health 27:529–538CrossRefGoogle Scholar
  45. 45.
    Rufyikiri G, Wannijn J, Wang L, Thiry Y (2006) Effects of phosphorus fertilization on the availability and uptake of uranium and nutrients by plants grown on soil derived from uranium mining debris. Environ Pollut 141:420–427CrossRefGoogle Scholar
  46. 46.
    Vandenhove H, Van Hees M (2007) Predicting radium availability and uptake from soil properties. Chemosphere 69:664–674CrossRefGoogle Scholar
  47. 47.
    Durrance EM (1986) Radioactivity in geology: principles and applications. John Wiley, New YorkGoogle Scholar
  48. 48.
    Wickleder MS, Fourest B, Dorhout PK (2008) In: Morss LR, Edelstein NM, Fuger J, Katz JJ (eds) The chemistry of the actinide and transactinide elements. Springer, DordrechtGoogle Scholar
  49. 49.
    Guo P, Jia X, Duan T, Xu J, Chen H (2010) Influence of plant activity and phosphates on thorium bioavailability in soils from Baotou area, Inner Mongolia. Environ Radioact 101:767–772CrossRefGoogle Scholar
  50. 50.
    Rodríguez PB, Tomé FV, Lozano JC (2002) About the assumption of linearity in soil-to-plant transfer factors for uranium and thorium isotopes and 226Ra. Sci Total Environ 284:167–175CrossRefGoogle Scholar
  51. 51.
    Pietrzak-Flis Z, Skowrohska-Smolak M (1995) Transfer of 210Pb and 210Po to plants via root system and above-ground interception. Sci Total Environ 162:139–147CrossRefGoogle Scholar
  52. 52.
    Vaupotič J, Bezek M, Kávási N, Ishikawa T, Yonehara H, Tokonami S (2012) Radon and thoron doses in kindergartens and elementary schools. Radiat Prot Dosim 152:247–252CrossRefGoogle Scholar
  53. 53.
    Veresoglou DS, Barbayiannis N, Matsi T, Anagnostopoulos C, Zalidis GC (1996) Shoot Sr concentrations in relation to shoot Ca concentrations and to soil properties. Plant Soil 178:95–100CrossRefGoogle Scholar
  54. 54.
    Juneau P, Popovic R (1999) Evidence for the rapid phytotoxicity and environmental stress evaluation using the PAM fluorometric method: importance and future application. Ecotoxicology 8:449–455CrossRefGoogle Scholar
  55. 55.
    Vanhoudt N, Horemans N, Biermans G, Saenen E, Wannijn J, Nauts R, Van Hees M, Vandenhove H (2014) Uranium affects photosynthetic parameters in Arabidopsis thaliana. Environ Exp Bot 97:22–29CrossRefGoogle Scholar
  56. 56.
    Kaur G, Singh HP, Batish DR, Kohli RK (2012) Growth, photosynthetic activity and oxidative stress in wheat (Triticum aestivum) after exposure of lead to soil. J Environ Biol 33:265–269Google Scholar
  57. 57.
    Dias MC, Monteiro C, Moutinho-Pereira J, Correia C, Gonçalves B, Santos C (2012) Cadmium toxicity affects photosynthesis and plant growth at different levels. Acta Physiol Plant 35:1281–1289CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  • Petra Planinšek
    • 1
    • 2
  • Borut Smodiš
    • 1
    • 2
  • Ljudmila Benedik
    • 1
    • 2
  1. 1.Department of Environmental SciencesJožef Stefan InstituteLjubljanaSlovenia
  2. 2.Jožef Stefan International Postgraduate SchoolLjubljanaSlovenia

Personalised recommendations