Journal of Radioanalytical and Nuclear Chemistry

, Volume 311, Issue 1, pp 121–126 | Cite as

Pollution of radiocesium and radiosilver in wharf roach (Ligia sp.) by the Fukushima Dai-ichi Nuclear Power Plant accident

  • Xuchun Qiu
  • Suzanne Lydia Undap
  • Masato Honda
  • Toshio Sekiguchi
  • Nobuo Suzuki
  • Yohei Shimasaki
  • Hironori Ando
  • Waka Sato-Okoshi
  • Toshihiro Wada
  • Tomoki Sunobe
  • Satoshi Takeda
  • Hiroyuki Munehara
  • Hisashi Yokoyama
  • Noriyuki Momoshima
  • Yuji Oshima


Radionuclide concentrations in wharf roaches inhabiting coastal areas of Honshu, Japan, were investigated in October 2011 and June 2012. Relative high concentrations of 110mAg (2.1–127 Bq kg-wet−1), 134Cs (2.6–61 Bq kg-wet−1), and 137Cs (3.5–92 Bq kg-wet−1) were detected in specimens from the eastern Honshu areas. Significantly lower 137Cs concentrations (0.7–1.6 Bq kg-wet−1) were detected in specimens from western and northern Honshu. The decay-corrected 137Cs concentration was significantly inversely correlated with the distance from the Fukushima Dai-ichi Nuclear Power Plant. Thus, wharf roach may serve as a good bioindicator for monitoring radioactive contamination of its habitats.


Ligia sp. 110mAg 134Cs 137Cs Fukushima Dai-ichi Nuclear Power Plant accident Bioindicator 



This study was funded in part by the JKA Foundation and by the cooperative research program of Institute of Nature and Environmental Technology, Kanazawa University Accept No. 5 in 2015.


  1. 1.
    Oikawa S, Takata H, Watabe T, Misonoo J, Kusakabe M (2013) Distribution of the Fukushima-derived radionuclides in seawater in the Pacific off the coast of Miyagi, Fukushima, and Ibaraki Prefectures, Japan. Biogeosciences 10:5031–5047CrossRefGoogle Scholar
  2. 2.
    Kusakabe M, Oikawa S, Takata H, Misonoo J (2013) Spatiotemporal distributions of Fukushima-derived radionuclides in nearby marine surface sediments. Biogeosciences 10:5019–5030CrossRefGoogle Scholar
  3. 3.
    Fisher NS, Beaugelin-Seiller K, Hinton TG, Baumann Z, Madigan DJ, Garnier-Laplace J (2013) Evaluation of radiation doses and associated risk from the Fukushima nuclear accident to marine biota and human consumers of seafood. Proc Natl Acad Sci USA 110:10670–10675CrossRefGoogle Scholar
  4. 4.
    Batlle IJV, Aono T, Brown JE, Hosseini A, Garnier-Laplace J, Sazykina T, Steenhuisen F, Strand P (2014) The impact of the Fukushima nuclear accident on marine biota: retrospective assessment of the first year and perspectives. Sci Total Environ 487:143–153CrossRefGoogle Scholar
  5. 5.
    Keum DK, Kim BH, Lim KM, Choi YH (2014) Radiation exposure to Marine biota around the Fukushima Daiichi NPP. Environ Monit Assess 186:2949–2956CrossRefGoogle Scholar
  6. 6.
    Kryshev II, Kryshev AI, Sazykina TG (2012) Dynamics of radiation exposure to marine biota in the area of the Fukushima NPP in March–May 2011. J Environ Radioact 114:157–161CrossRefGoogle Scholar
  7. 7.
    Horiguchi T, Yoshii H, Mizuno S, Shiraishi H (2016) Decline in intertidal biota after the 2011 Great East Japan earthquake and tsunami and the Fukushima nuclear disaster: field observations. Sci Rep 6:20416CrossRefGoogle Scholar
  8. 8.
    Tsai ML, Dai CF (2001) Life history plasticity and reproductive strategy enabling the invasion of Ligia exotica (Crustacea : Isopoda) from the littoral zone to an inland creek. Mar Ecol Prog Ser 210:175–184CrossRefGoogle Scholar
  9. 9.
    Keskinen E, Takaku Y, Meyer-Rochow VB, Hariyama T (2002) Postembryonic eye growth in the seashore isopod Ligia exotica (Crustacea, Isopoda). Biol Bull 202:223–231CrossRefGoogle Scholar
  10. 10.
    Hurtado LA, Mateos M, Santamaria CA (2010) Phylogeography of Supralittoral Rocky Intertidal Ligia Isopods in the Pacific Region from Central California to Central Mexico. PLoS ONE 5:e11633CrossRefGoogle Scholar
  11. 11.
    Nunomura N (1983) Studies on the terrestrial isopod crustaceans in Japan. I. Taxonomy of the families Ligiidae, Trichoniscidae and Olibrinidae. Bull Toyama Sci Mus 5:23–68Google Scholar
  12. 12.
    Horiguchi H, Hironaka M, Meyer-Rochow VB, Hariyama T (2007) Water uptake via two pairs of specialized legs in Ligia exotica (Crustacea, Isopoda). Biol Bull 213:196–203CrossRefGoogle Scholar
  13. 13.
    Undap SL, Matsunaga S, Honda M, Sekiguchi T, Suzuki N, Khalil F, Qiu XC, Shimasaki Y, Ando H, Sato-Okoshi W, Sunobe T, Takeda S, Munehara H, Oshima Y (2013) Accumulation of organotins in wharf roach (Ligia exotica Roux) and its ability to serve as a biomonitoring species for coastal pollution. Ecotoxicol Environ Safe 96:75–79CrossRefGoogle Scholar
  14. 14.
    Aono T, Ito Y, Sohtome T, Mizuno T, Igarashi S, Kanda J, Ishimaru T (2014) Observation of radionuclides in marine biota off the coast of fukushima prefecture after TEPCO’s fukushima daiichi nuclear power station accident. In: Takahashi S (ed) Radiation monitoring and dose estimation of the Fukushima nuclear accident. Springer, Tokyo, pp 115–123CrossRefGoogle Scholar
  15. 15.
    Kawai H, Kitamura A, Mimura M, Mimura T, Tahara T, Aida D, Sato K, Sasaki H (2014) Radioactive cesium accumulation in seaweeds by the Fukushima 1 nuclear power plant accident-two years’ monitoring at Iwaki and its vicinity. J Plant Res 127:23–42CrossRefGoogle Scholar
  16. 16.
    Takata H, Kusakabe M, Oikawa S (2015) Radiocesiums (Cs-134, Cs-137) in zooplankton in the waters of Miyagi, Fukushima and Ibaraki Prefectures. J Radioanal Nucl Chem 303:1265–1271CrossRefGoogle Scholar
  17. 17.
    Sohtome T, Wada T, Mizuno T, Nemoto Y, Igarashi S, Nishimune A, Aono T, Ito Y, Kanda J, Ishimaru T (2014) Radiological impact of TEPCO’s Fukushima Dai-ichi nuclear power plant accident on invertebrates in the coastal benthic food web. J Environ Radioact 138:106–115CrossRefGoogle Scholar
  18. 18.
    Wada T, Nemoto Y, Shimamura S, Fujita T, Mizuno T, Sohtome T, Kamiyama K, Morita T, Igarashi S (2013) Effects of the nuclear disaster on marine products in Fukushima. J Environ Radioact 124:246–254CrossRefGoogle Scholar
  19. 19.
    Inoue M, Kofuji H, Nagao S, Yamamoto M, Hamajima Y, Fujimoto K, Yoshida K, Suzuki A, Takashiro H, Hayakawa K (2012) Low levels of 134Cs and 137Cs in surface seawaters around the Japanese Archipelago after the Fukushima Dai-ichi nuclear power plant accident in 2011. Geochem J 46:311–320CrossRefGoogle Scholar
  20. 20.
    Inoue M, Yoneoka S, Ochiai S, Oikawa S, Fujimoto K, Yagi Y, Honda N, Nagao S, Yamamoto M, Hamajima Y (2015) Lateral and temporal variations in Fukushima Dai-ichi NPP-derived 134Cs and 137Cs in marine sediments in/around the Sado Basin, Sea of Japan. J Radioanal Nucl Chem 303:1313–1316CrossRefGoogle Scholar
  21. 21.
    Inoue M, Kofuji H, Oikawa S, Murakami T, Yamamoto M, Nagao S, Hamajima Y, Misonoo J (2013) Spatial variations of low levels of 134Cs and 137Cs in seawaters within the Sea of Japan after the Fukushima Dai-ichi nuclear power plant accident. Appl Radiat Isot 81:340–343CrossRefGoogle Scholar
  22. 22.
    Shozugawa K, Riebe B, Walther C, Brandl A, Steinhauser G (2016) Fukushima-derived radionuclides in sediments of the Japanese Pacific Ocean coast and various Japanese water samples (seawater, tap water, and coolant water of Fukushima Daiichi reactor unit 5). J Radioanal Nucl Chem 307:1787–1793CrossRefGoogle Scholar
  23. 23.
    Bossew P (2013) Anthropogenic radionuclides in environmental samples from Fukushima Prefecture. Radiat Emerg Med 2:69–75Google Scholar
  24. 24.
    Kaeriyama H, Fujimoto K, Ambe D, Shigenobu Y, Ono T, Tadokoro K, Okazaki Y, Kakehi S, Ito S-I, Narimatsu Y (2015) Fukushima-derived radionuclides 134Cs and 137Cs in zooplankton and seawater samples collected off the Joban-Sanriku coast, in Sendai Bay, and in the Oyashio region. Fish Sci 81:139–153CrossRefGoogle Scholar
  25. 25.
    IAEA (2004) Sediment distribution coefficients and concentration factors for biota in the marine environment. In: International Atomic Energy Agency, ViennaGoogle Scholar
  26. 26.
    Lopes-Leitzke ER, Macedo CWSS, Longaray DA, D'incao F (2011) Natural diet of Ligia exotica (Crustacea, Isopoda, Ligiidae) in two estuarine regions of Patos Lagoon, Rio Grande do Sul, Brazil, vol 33. Universidade Federal do Rio Grande, Atlântica, pp 149–160Google Scholar
  27. 27.
    Christofoletti RA, Almeida TV, Ciotti M (2011) Environmental and grazing influence on spatial variability of intertidal biofilm on subtropical rocky shores. Mar Ecol Prog Ser 424:15–23CrossRefGoogle Scholar
  28. 28.
    Watanabe T, Tsuchiya N, Oura Y, Ebihara M, Inoue C, Hirano N, Yamada R, Yamasaki S, Okamoto A, Nara FW, Nunohara K (2012) Distribution of artificial radionuclides (Ag-110 m, Te-129 m, Cs-134, Cs-137) in surface soils from Miyagi Prefecture, northeast Japan, following the 2011 Fukushima Dai-ichi nuclear power plant accident. Geochem J 46:279–285CrossRefGoogle Scholar
  29. 29.
    Bezhenar R, Jung KT, Maderich V, Willemsen S, De With G, Qiao F (2016) Transfer of radiocaesium from contaminated bottom sediments to marine organisms through benthic food chain in post-fukushima and post-chernobyl periods. Biogeosci Discuss 2016:1–30CrossRefGoogle Scholar
  30. 30.
    Kogure Y (2004) Stable carbon and nitrogen isotope analysis of the sublittoral benthic food web structure of an exposed sandy beach. Bull Biogeogr Soc Jpn 59:15–25Google Scholar
  31. 31.
    Kogure Y (2008) Comparison of the distribution pattern of carbon and nitrogen stable isotope ratios of molluscan shellfish from the Niigata coastal area and Chita Bay, Japan. Bull Biogeogr Soc Jpn 63:21–28Google Scholar
  32. 32.
    Deniro MJ, Epstein S (1978) Influence of diet on the distribution of carbon isotopes in animals. Geochim Cosmochim Acta 42:495–506CrossRefGoogle Scholar
  33. 33.
    Minagawa M, Wada E (1984) Stepwise enrichment of 15N along food chains: further evidence and the relation between δ15N and animal age. Geochim Cosmochim Acta 48:1135–1140CrossRefGoogle Scholar
  34. 34.
    Yokoyama H (2008) Food sources of consumers in temperate estuaries and costal waters: achievements and potential problems of isotopic studies. Jpn J Ecol 58:23–36Google Scholar
  35. 35.
    Schimmelmann A, Deniro MJ (1986) Stable isotopic studies on chitin. II. The 13C/12C and 15N/14N ratios in arthropod chitin. Contrib Mar Sci 29:113–130Google Scholar
  36. 36.
    Nakanishi H, Mori A, Takeda K, Tanaka H, Kobayashi N, Tanoi K, Yamakawa T, Mori S (2015) Discovery of radioactive silver (110mAg) in spiders and other fauna in the terrestrial environment after the meltdown of Fukushima Dai-ichi nuclear power plant. Proc Jpn Acad Ser B Phys Biol Sci 91:160–174CrossRefGoogle Scholar
  37. 37.
    Buesseler KO, Jayne SR, Fisher NS, Rypina II, Baumann H, Baumann Z, Breier CF, Douglass EM, George J, Macdonald AM (2012) Fukushima-derived radionuclides in the ocean and biota off Japan. Proc Natl Acad Sci USA 109:5984–5988CrossRefGoogle Scholar
  38. 38.
    Lepage H, Evrard O, Onda Y, Patin J, Chartin C, Lefèvre I, Bonté P, Ayrault S (2014) Environmental mobility of 110mAg: lessons learnt from Fukushima accident (Japan) and potential use for tracking the dispersion of contamination within coastal catchments. J Environ Radioact 130:44–55CrossRefGoogle Scholar
  39. 39.
    Hirose K (2012) 2011 Fukushima Dai-ichi nuclear power plant accident: summary of regional radioactive deposition monitoring results. J Environ Radioact 111:13–17CrossRefGoogle Scholar
  40. 40.
    Ratte HT (1999) Bioaccumulation and toxicity of silver compounds: a review. Environ Toxicol Chem 18:89–108CrossRefGoogle Scholar
  41. 41.
    Rouleau C, Gobeil C, Tjälve H (2000) Accumulation of silver from the diet in two marine benthic predators: the snow crab (Chionoecetes opilio) and American plaice (Hippoglossoides platessoides). Environ Toxicol Chem 19:631–637CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  • Xuchun Qiu
    • 1
  • Suzanne Lydia Undap
    • 1
    • 2
  • Masato Honda
    • 1
  • Toshio Sekiguchi
    • 3
  • Nobuo Suzuki
    • 3
  • Yohei Shimasaki
    • 1
  • Hironori Ando
    • 4
  • Waka Sato-Okoshi
    • 5
  • Toshihiro Wada
    • 6
  • Tomoki Sunobe
    • 7
  • Satoshi Takeda
    • 8
  • Hiroyuki Munehara
    • 9
  • Hisashi Yokoyama
    • 10
  • Noriyuki Momoshima
    • 11
  • Yuji Oshima
    • 1
  1. 1.Laboratory of Marine Environmental Science, Faculty of AgricultureKyushu UniversityFukuokaJapan
  2. 2.Faculty of Fisheries and Marine SciencesSam Ratulangi UniversityManadoIndonesia
  3. 3.Noto Marine Laboratory, Institute of Nature and Environmental TechnologyKanazawa UniversityNoto-choJapan
  4. 4.Sado Marine Biological Station, Faculty of ScienceNiigata UniversitySadoJapan
  5. 5.Laboratory of Biological Oceanography, Graduate School of Agricultural ScienceTohoku UniversitySendaiJapan
  6. 6.Institute of Environmental RadioactivityFukushima UniversityFukushimaJapan
  7. 7.Tateyama Station, Field Science CenterTokyo University of Marine Science and TechnologyTateyamaJapan
  8. 8.Research Center for Marine Biology, Asamushi, Graduate School of Life ScienceTohoku UniversityAsamushiJapan
  9. 9.Usujiri Fisheries Station, Field Science Center for Northern BiosphereHokkaido UniversityHakodateJapan
  10. 10.Field Science Education and Research CenterKyoto UniversityKyotoJapan
  11. 11.Central Institute of Radioisotope Sciences and SafetyKyushu UniversityFukuokaJapan

Personalised recommendations