Advertisement

Investigation of the potential antitumor radioactive complex of platinum(II) with tetracycline

  • A. S. Leal
  • I. M. Marzano
  • E. C. Pereira-Maia
  • R. Jacimovic
Article
  • 193 Downloads

Abstract

The proposal of this work was to investigate the effect of the radioactive complex of platinum(II) with tetracycline, [PtCl2(C22H24N2O8)]*, or [Tc–Pt(II)]*, on K562 cells—blood human cells of leukemia—and verify if the internal radio-chemotherapy would be able to produce additional effects compared with the non-labelled complex, [PtCl2(C22H24N2O8)], or [Tc–Pt(II)]. The concentration required to inhibit 50 % of cellular growth, (IC50), was 2.5 ± 0.2 µM for [Tc–Pt(II)]* and 14.5 ± 0.9 µM for the non-labelled molecule [Tc–Pt(II)]. This result suggest that the [Tc–Pt(II)]* could be a potent radiosensitizer evoking a supra additive effect. Treatment using the internal radio-chemotherapy may be a useful alternative to reduce the drug concentration required for effective inhibition of the tumor growth.

Keywords

Complex of platinum(II) Tetracycline Cisplatin Antitumor effects 

Notes

Acknowledgments

The authors thank FAPEMIG and the CNPq for their financial support.

References

  1. 1.
    Rosenberg B, Van Camp L, Trosco JE, Mansour VH (1969) Platinum compounds: a new class of potent antitumour agents. Nature 222:385–386CrossRefGoogle Scholar
  2. 2.
    Matthey J (1990) Drugs of the future. Bristol-Myers Squibb, New YorkGoogle Scholar
  3. 3.
    Pisters KM, Le Chevalier TJ (2005) Adjuvant chemotherapy in completely resected non-small-cell lung cancer. J Clin Oncol 23:3270–3278CrossRefGoogle Scholar
  4. 4.
    Jamieson ER, Lippard SJ (1999) Structure, recognition, and processing of cisplatin-DNA adducts. Chem Rev 99:2467–2498CrossRefGoogle Scholar
  5. 5.
    Silva H, Almeida M, César ET, Silveira JN, Garnier-Suillerot A, Paula FCS, Pereira-Maia EC, Fontes APJ (2008) Impact of the carbon chain length of novel platinum complexes. J Inorg Biochem Inorg Biochem 102:767–772CrossRefGoogle Scholar
  6. 6.
    Sykes AG (1988) Reactions of complexes of platinum metals with bio-molecules. Platin Met Rev 32:170–178Google Scholar
  7. 7.
    Pasini A, Zunino F (1987) New cisplatin analogues—on the way to better antitumor agents. Angew Chem Int Ed Engl 26:615–624CrossRefGoogle Scholar
  8. 8.
    Farrell N, Qu Y, Hacker MP (1990) Cytotoxicity and antitumor activity of bis(platinum)complexes. A novel class of platinum complexes active in cell lines resistant to both cisplatin and 1,2-diaminocyclohexane complexes. J Med Chem 33:2179–2184CrossRefGoogle Scholar
  9. 9.
    Junior ADC, Abrantes FM, Menezes MA, Leal AS, Oliveira MC (2005) Braz Arch Biol Technol 48:85–88Google Scholar
  10. 10.
    Wolinskya JB, Colsonb YL, Grinstaff MW (2012) Local drug delivery strategies for cancer treatment: gels, nanoparticles, polymeric films, rods, and wafers. J Control Release 159:14–26CrossRefGoogle Scholar
  11. 11.
    Duan X, He C, Kron SJ, Lin W (2016) WIRES nanomed nanobiotechnol. doi: 10.1002/wnan.1390
  12. 12.
    Soares MA, Mattos JL, Pujatti PB, Leal AS, Santos WG, Santos RG (2011) Evaluation of the synergetic radio-chemotherapy effects of the radio labelled cisplatin for the treatment of glioma. J Radioanal Nucl Chem. doi: 10.1007/s10967-011-1414-2 Google Scholar
  13. 13.
    Júnior AD, Mota LG, Nunan EA, Wainstein AJ, Wainstein APD, Leal AS, Cardoso VN, De Oliveira MC (2007) Tissue distribution evaluation of stealth pH-sensitive liposomal cisplatin versus free cisplatin in Ehrlich tumor-bearing mice. Life Sci 80:659–664CrossRefGoogle Scholar
  14. 14.
    Bodnar NE, Dikiy MP, Medvedeva EP (2014) Photonuclear production and antitumor effect of radioactive cisplatin (195mPt). J Radioanal Nucl Chem 305:133–138CrossRefGoogle Scholar
  15. 15.
    Rozy K, Piyali C, Chadha VD (2014) Radiolabeling of cisplatin and its biodistribution in an experimental model of lung carcinogenesis. J Environ Pathol Toxicol Oncol 33:11–17CrossRefGoogle Scholar
  16. 16.
    Wheller RH, Spencer S (1995) Cisplatin plus radiation therapy. J Infus Chemother 5:61–66Google Scholar
  17. 17.
    Chatal JF, Hoefnagel CA (1999) Radionuclide therapy. Lancet 354:931–935CrossRefGoogle Scholar
  18. 18.
    Soares DCF, Menezes MABC, Santos RG, Ramaldes GA (2010) 159Gd: preparation and preliminary evaluation as a potential antitumoral radionuclide. J Radioanal Nucl Chem 284:315–320CrossRefGoogle Scholar
  19. 19.
    Soares DCF, Oliveira MC, Santos RG, Andrade MS, Vilela JMC, Cardoso VM, Ramaldes GA (2011) Liposomes radiolabeled with 159Gd-DTPA-BMA: preparation, physicochemical characterization, release profile and in vitro cytotoxic evaluation. Eur J Pharm Sci 42:462–469CrossRefGoogle Scholar
  20. 20.
    Chartone-Souza E, Loyola TL, Bucciarelli-Rodriguez M, Menezes MABC, Nicolas AR, Pereira-Maia EC (2005) Synthesis and characterization of a tetracycline–platinum(II) complex active against resistant bacteria. J Inorg Biochem 99:1001–1008CrossRefGoogle Scholar
  21. 21.
    Silva PP, de Paula FCS, Guerra W, Silveira JN, Botelho FV, Vieira Leda Q, Bortolotto T, Fischer FL, Bussi G, Terenzi H, Pereira-Maia EC (2010) Platinum(II) compounds of tetracyclines as potential anticancer agents: cytotoxicity, uptake and interactions with DNA. J Braz Chem Soc 7:1237–1246CrossRefGoogle Scholar
  22. 22.
    Pereira-Maia EC, Silva PP, Almeida WB, Santos HF, Marcial BL, Ruggiero R, Guerra W (2010) Tetraciclinas e glicilciclinas: uma visão geral. Quim Nova 33:700–706CrossRefGoogle Scholar
  23. 23.
    Leal AS, Júnior ADC, Abrantes FM, Menezes MABC, Ferraz V, Cruz TS, Cardoso VN, Oliveira MC (2006) Production of the radioactive antitumoral cisplatin. Appl Rad Isot 64:178–181CrossRefGoogle Scholar
  24. 24.
    Leal AS, Sepe FP, Gomes TCB (2014) J Radional Nucl Chem 300:645–651CrossRefGoogle Scholar
  25. 25.
    TEC DOC-564 (1990) Practical aspects of operating a neutron activation analysis laboratory, IAEA, Vienna, AustriaGoogle Scholar
  26. 26.
    Lederer CM, Shirley VS (1978) Table of isotopes. Wiley Interscience Pub, New YorkGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  • A. S. Leal
    • 1
  • I. M. Marzano
    • 2
  • E. C. Pereira-Maia
    • 2
  • R. Jacimovic
    • 3
  1. 1.Centre for Development of Nuclear Technology (CDTN), Brazilian Commission for Nuclear Energy (CNEN)UFMGBelo HorizonteBrazil
  2. 2.Department of ChemistryFederal University of Minas Gerais (UFMG)Belo HorizonteBrazil
  3. 3.Jožef Stefan InstituteLjubljanaSlovenia

Personalised recommendations