Fifteen years of success: user access programs at the Budapest prompt-gamma activation analysis laboratory

  • L. SzentmiklósiEmail author
  • Zs. Kasztovszky
  • T. Belgya
  • Zs. Révay
  • Z. Kis
  • B. Maróti
  • K. Gméling
  • V. Szilágyi


The prompt-γ activation analysis (PGAA) laboratory of the Budapest Neutron Centre has been actively involved in national, international collaborations and EU-funded transnational access programs since 1999. The main applications are in material science, nuclear data measurement, method development, cultural heritage science and geology. PGAA was found to be ideal for the analysis of many light and medium-Z elements as major and minor components (down to 10–100 ppm), plus some traces, like H, B, Cl, Hg, noble metals and rare-earth elements. Being a real-time probing method, it is also possible to generate time- or spatially-resolved data. This paper reviews our activities in the past fifteen years, presents highlights of user-driven research projects and gives a summary about currently running and future access programs.


Budapest Neutron Centre Prompt-γ activation analysis Transnational access 



We are thankful to the NMI3, C-ERIC, CHARISMA, IPERION, EFNUDAT, ERINDA and CHANDA access projects for financial support and our user community for inspiration and fruitful collaboration.


  1. 1.
    Molnár GL (ed) (2004) Handbook of prompt gamma activation analysis with neutron beams. Kluwer Academic Publisher, Dordrecht, pp 1–423Google Scholar
  2. 2.
    Lehmann EH, Vontobel P, Frei G, Kuehne G, Kaestner A (2011) How to organize a neutron imaging user lab? 13 years of experience at PSI, CH. Nucl Instrum Methods Phys Res A 651:1–5CrossRefGoogle Scholar
  3. 3.
    Révay Zs, Kudějová P, Kleszcz K, Söllradl S, Genreith C (2015) In-beam activation analysis facility at MLZ, Garching. Nucl Instrum Methods A 799:114–123CrossRefGoogle Scholar
  4. 4.
    Paul RL, Sahin D, Cook JC, Brocker C, Lindstrom RM, O’Kelly DJ (2015) NGD cold-neutron prompt gamma-ray activation analysis spectrometer at NIST. J Radioanal Nucl Chem 304:189–193CrossRefGoogle Scholar
  5. 5.
    Molnár G, Belgya T, Dabolczi L, Fazekas B, Révay Zs, Veres Á, Bikit I, Kis Z, Östör J (1997)  The new prompt gamma-activation analysis facility at Budapest. J Radioanal Nucl Chem 215:111–115CrossRefGoogle Scholar
  6. 6.
    Belgya T, Révay Zs, Fazekas B, Héjja I, Dabolczi L, Molnár GL, Kis Z, Östör J, Kaszás Gy (1997) In: Molnár G, Belgya T, Révay Zs (eds) Proceedings of 9th international symposium on capture gamma-ray spectroscopy and related topics, Budapest, Hungary, 8–12 October. Springer, Budapest, p 826Google Scholar
  7. 7.
    Rosta L, Belgya T, Cser L, Grosz T, Kaszás G, Molnár G, Révay Z, Török G (1997) Neutron guide system at the Budapest Research Reactor. Physica B 234:1196CrossRefGoogle Scholar
  8. 8.
    Révay Zs, Belgya T, Kasztovszky Zs, Weil JL, Molnár GL (2004) Cold neutron PGAA facility at Budapest. Nucl Instrum Methods B 213:385CrossRefGoogle Scholar
  9. 9.
    Ember PP, Belgya T, Weil JL, Molnár GL (2002) Coincidence measurement setup for PGAA and nuclear structure studies. Appl Radiat Isot 57:573–577CrossRefGoogle Scholar
  10. 10.
    Révay Zs, Belgya T, Szentmiklósi L, Kis Z (2008) Recent developments and applications at the prompt gamma activation analysis facility at Budapest. J Radioanal Nucl Chem 278:643–646CrossRefGoogle Scholar
  11. 11.
    Szentmiklósi L, Belgya T, Révay Z, Kis Z (2010) Upgrade of the prompt-gamma activation analysis (PGAA) and the neutron induced prompt-gamma spectroscopy (NIPS) facilities at the Budapest Research Reactor. J Radioanal Nucl Chem 286:501–505CrossRefGoogle Scholar
  12. 12.
    Belgya T, Kis Z, Szentmiklósi L, Kasztovszky Z, Festa G, Andreanelli L, De Pascale MP, Pietropaolo A, Kudejova P, Schulze R, Materna T (2008) A new PGAI–NT setup at the NIPS facility of the Budapest Research Reactor. J Nucl Radioanal Chem 278(3):713–718CrossRefGoogle Scholar
  13. 13.
    Belgya T, Kis Z, Szentmiklósi L, Kasztovszky Z, Kudejova P, Schulze R, Materna T, Festa G, Caroppi PA (2008) First elemental imaging experiments on a combined PGAI and NT setup at the Budapest Research Reactor. J Nucl Radioanal Chem 278(3):751–754CrossRefGoogle Scholar
  14. 14.
    Szentmiklósi L, Kis Z, Belgya T, Berlizov AN (2013) On the design and installation of a Compton-suppressed HPGe spectrometer at the Budapest neutron-induced prompt gamma spectroscopy (NIPS) facility. J Nucl Radioanal Chem 298(3):1605–1611CrossRefGoogle Scholar
  15. 15.
    Kis Z, Szentmiklosi L, Belgya T (2015) NIPS–NORMA station—a combined facility for neutron-based nondestructive element analysis and imaging at the Budapest Neutron Centre. Nucl Instrum Methods Phys Res A 779:116–123CrossRefGoogle Scholar
  16. 16.
    Révay Zs, Firestone RB, Belgya T, Molnár GL (2004) Catalog and atlas of prompt gamma rays. In: Molnár GL (ed) Handbook of prompt gamma activation analysis with neutron beams. Kluwer Academic Publishers, Dordrecht, pp 173–364CrossRefGoogle Scholar
  17. 17.
    Fazekas B, Molnár G, Belgya T, Dabolczi L, Simonits A (1997) Introducing HYPERMET-PC for automatic analysis of complex gamma-ray spectra. J Nucl Radioanal Chem 215(2):271–277CrossRefGoogle Scholar
  18. 18.
    Révay Z (2009) Determining elemental composition using prompt gamma activation analysis. Anal Chem 81:6851–6859CrossRefGoogle Scholar
  19. 19.
    Revay Z, Belgya T, Szentmiklosi L, Kis Z, Wootsch A, Teschner D, Swoboda M, Schlogl R, Borsodi J, Zepernick R (2008) In situ determination of hydrogen inside a catalytic reactor using prompt gamma activation analysis. Anal Chem 80(15):6066–6071CrossRefGoogle Scholar
  20. 20.
    Teschner D, Borsodi J, Wootsch A, Revay Z, Havecker M, Knop-Gericke A, Jackson SD, Schlogl R (2008) The roles of subsurface carbon and hydrogen in palladium-catalyzed alkyne hydrogenation. Science 320(5872):86–89CrossRefGoogle Scholar
  21. 21.
    Kovnir K, Armbrüster M, Teschner D, Venkov T, Szentmiklósi L, Jentoft FC, Knop-Gericke A, Grin Yu, Schlögl R (2009) In situ surface characterization of the intermetallic compound PdGa—a highly selective hydrogenation catalyst. Surf Sci 603:1784–1792CrossRefGoogle Scholar
  22. 22.
    Armbruster M, Kovnir K, Friedrich M, Teschner D, Wowsnick G, Hahne M, Gille P, Szentmiklosi L, Feuerbacher M, Heggen M, Girgsdies F, Rosenthal D, Schlogl R, Grin Y (2012) Al13Fe4 as a low-cost alternative for palladium in heterogeneous hydrogenation. Nat Mater 11(8):690–693CrossRefGoogle Scholar
  23. 23.
    Teschner D, Farra R, Yao LD, Schlogl R, Soerijanto H, Schomacker R, Schmidt T, Szentmiklosi L, Amrute AP, Mondelli C, Perez-Ramirez J, Novell-Leruth G, Lopez N (2012) An integrated approach to Deacon chemistry on RuO2-based catalysts. J Catal 285(1):273–284CrossRefGoogle Scholar
  24. 24.
    Teschner D, Novell-Leruth G, Farra R, Knop-Gericke A, Schlogl R, Szentmiklosi L, Hevia MG, Soerijanto H, Schomacker R, Perez-Ramirez J, Lopez N (2012) In situ surface coverage analysis of RuO2-catalysed HCl oxidation reveals the entropic origin of compensation in heterogeneous catalysis. Nat Chem 4(9):739–745CrossRefGoogle Scholar
  25. 25.
    Farra R, García-Melchor M, Eichelbaum M, Hashagen M, Frandsen W, Allan J, Girgsdies F, Szentmiklósi L, López N, Teschner D (2013) Promoted ceria: a structural, catalytic, and computational study. ACS Catal 3(10):2256–2268CrossRefGoogle Scholar
  26. 26.
    Moser M, Vilé G, Colussi S, Krumeich F, Teschner D, Szentmiklósi L, Trovarelli A, Perez-Ramirez J (2015) Structure and reactivity of ceria-zirconia catalysts for bromine and chlorine production via the gas-phase oxidation of hydrogen halides. J Catal 331:128–137CrossRefGoogle Scholar
  27. 27.
    Mukherji D, Gilles R, Karge L, Strunz P, Beran P, Eckerlebe H, Stark A, Szentmiklósi L, Mácsik Z, Schumacher G, Zizak I, Hofmann M, Hoelzel M, Rosler J (2014) Neutron and synchrotron probes in the development of Co–Re-based alloys for next generation gas turbines with an emphasis on the influence of boron additives. J Appl Crystallogr 47:1417–1430CrossRefGoogle Scholar
  28. 28.
    Mukherji D, Rösler J, Wehrs J, Strunz P, Beran P, Gilles R, Hofmann M, Hoelzel M, Eckerlebe H, Szentmiklósi L, MácSik Z (2013) Application of in situ neutron and X-ray measurements at high temperatures in the development of Co–Re-based alloys for gas turbines. Metall Mater Trans A 44(1):22–30CrossRefGoogle Scholar
  29. 29.
    Mukherji D, Rösler J, Krueger M, Heilmaier M, Bölitz M-C, Völkl R, Glatzel U, Szentmiklósi L (2012) Effects of boron addition on microstructure and mechanical properties of Co–Re-based high temperature alloys. Scr Mater 66:60–63CrossRefGoogle Scholar
  30. 30.
    Hosseini AM, Tungler A, Schay Z, Szabo S, Kristof J, Szeles E, Szentmiklosi L (2012) Comparison of precious metal oxide/titanium monolith catalysts in wet oxidation of wastewaters. Appl Catal B 127:99–104CrossRefGoogle Scholar
  31. 31.
    Pamukchieva V, Szekeres A, Todorova K, Fabian M, Svab E, Revay Z, Szentmiklosi L (2009) Evaluation of basic physical parameters of quaternary Ge.Sb–(S, Te) chalcogenide glasses. J Noncryst Solids 355(50–51):2485–2490CrossRefGoogle Scholar
  32. 32.
    Käppeler F, Belgya T, Dillmann I, Domingo Pardo C, Giesen U, Heil M, Lederer C, Petrich D, Uberseder E (2011) EFNUDAT synergies in astrophysics. In: Chiaveri E (ed) Proceedings of the final scientific EFNUDAT workshop, 30 August–2 September 2010. European Laboratory for Particle Physics: CERN, Geneva, p 9–15Google Scholar
  33. 33.
    Rossbach M, Genreith C, Randriamalala T, Mauerhofer E, Revay Z, Kudejova P, Söllradl S, Belgya T, Szentmiklosi L, Firestone RB, Hurst AM, Bernstein LA, Sleaford B, Escher JE (2015) TANDEM: a mutual cooperation effort for transactinide nuclear data evaluation and measurement. J Nucl Radioanal Chem 304:1359–1363CrossRefGoogle Scholar
  34. 34.
    Genreith C, Rossbach M, Mauerhofer E, Belgya T, Caspary G (2013) Measurement of thermal neutron capture cross sections of Np-237 and Pu-242 using prompt gamma neutron activation. J Nucl Radioanal Chem 296(2):699–703CrossRefGoogle Scholar
  35. 35.
    Belgya T, Bouland O, Noguere G, Plompen A, Schillebeeckx P, Szentmiklosi L (2007) The thermal neutron capture cross section of 129I. In: International conference on nuclear data for science and technology, 2008. EDP Sciences, Niza, p 631–634Google Scholar
  36. 36.
    Hurst AM, Firestone RB, Basunia MS, Sleaford B, Summers N, Escher J, Révay Z, Szentmiklósi L, Belgya T (2014) A structural evaluation of the tungsten isotopes via thermal neutron capture. Phys Rev C 89(1):014606CrossRefGoogle Scholar
  37. 37.
    Borella A, Belgya T, Kopecky S, Gunsing F, Moxon MC, Rejmund M, Schillebeeckx P, Szentmiklósi L (2011) Determination of the 209Bi(n, γ)210Bi and 209Bi(n, γ)210m,gBi reaction cross sections in a cold neutron beam. Nucl Phys A 850(1):1–21CrossRefGoogle Scholar
  38. 38.
    Massarczyk R, Schramm G, Junghans AR, Schwengner R, Anders M, Belgya T, Beyer R, Birgersson E, Ferrari A, Grosse E, Hannaske R, Kis Z, Kögler T, Kosev K, Marta M, Szentmiklósi L, Wagner A, Weil JL (2013) Electromagnetic dipole strength up to the neutron separation energy from 196Pt(γ, γ′) and 195Pt(n, γ) reactions. Phys Rev C 87:044306CrossRefGoogle Scholar
  39. 39.
    Schramm G, Massarczyk R, Junghans AR, Belgya T, Beyer R, Birgersson E, Grosse E, Kempe M, Kis Z, Kosev K, Krticka M, Matic A, Schilling KD, Schwengner R, Szentmiklosi L, Wagner A, Weil JL (2012) Dipole strength in Se-78 below the neutron separation energy from a combined analysis of Se-77(n, γ)and Se-78(γ, γ′) experiments. Phys Rev C 85(1):014311CrossRefGoogle Scholar
  40. 40.
    Wallner A, Belgya T, Bichler M, Buczak K, Dillmann I, Käppeler F, Lederer C, Mengoni A, Quinto F, Steier P, Szentmiklósi L (2014) Novel method to study neutron capture of U-235 and U-238 simultaneously at keV energies. Phys Rev Lett 112(19):192501.6CrossRefGoogle Scholar
  41. 41.
    Wallner A, Buczak K, Belgya T, Bichler M, Coquard L, Dillmann I, Forstner O, Golser R, Käppeler F, Kutschera W, Lederer C, Mengoni A, Priller A, Reifarth R, Steier P, Szentmiklosi L (2010) Precise measurement of the neutron capture reaction 54Fe(n, γ)55Fe via AMS, in Nuclear Physics in Astrophysics IV. 2010, Journal of Physics Conference Series 202: Lab. Nazionali di Frascati with Lab. Nazionali del Gran Sasso, 8–12 June 2009, p 012020Google Scholar
  42. 42.
    Oberstedt S, Belgya T, Billnert R, Borcea R, Cano-Ott D, Göök A, Hambsch FJ, Karlsson J, Kis Z, Martinez T, Oberstedt A, Szentmiklósi L, Takács K (2010) Correlation measurements of fission–fragment properties. In: EFNUDAT user and collaboration workshop: measurements and models of nuclear reactions, EPJ web of conferences 8, Paris, France, 25–27 May 2010, p 03005Google Scholar
  43. 43.
    Oberstedt S, Billnert R, Belgya T, Borcea R, Bryś T, Geerts W, Göök A, Hambsch F-J, Kish Z, Martinez Perez T, Oberstedt A, Szentmiklósi L, Vidali M (2014) New prompt fission γ-ray data in response to the OECD/NEA high priority request. Nucl Data Sheets 119:225–228CrossRefGoogle Scholar
  44. 44.
    Oberstedt A, Belgya T, Billnert R, Borcea R, Bryå T, Geerts W, Göök A, Hambsch FJ, Kis Z, Martinez T, Oberstedt S, Szentmiklosi L, Takàcs K, Vidali M (2013) Improved values for the characteristics of prompt-fission γ-ray spectra from the reaction 235U(nth, f). Phys Rev C 87(5):051602.5CrossRefGoogle Scholar
  45. 45.
    Oberstedt S, Billnert R, Belgya T, Bryś T, Geerts W, Guerrero C, Hambsch F-J, Kis Z, Moens A, Oberstedt A, Sibbens G, Szentmiklósi L, Vanleeuw D, Vidali M (2014) High-precision prompt-γ-ray spectral data from the reaction 241Pu(nth, f). Phys Rev C 90(2):024618.6CrossRefGoogle Scholar
  46. 46.
    Kiss V, Fischl K, Horváth E, Káli G, Kasztovszky Z, Kis Z, Maróti B, Szabó G (2015) Non-destructive analyses of bronze artefacts from Bronze Age Hungary using neutron-based methods. J Anal At Spectrom 30(3):685–693CrossRefGoogle Scholar
  47. 47.
    Mödlinger M, Piccardo P, Kasztovszky Z, Kovács I, Szokefalvi-Nagy Z, Káli G, Szilágyi V (2013) Archaeometallurgical characterization of the earliest European metal helmets. Mater Charact 79:22–36CrossRefGoogle Scholar
  48. 48.
    Rogante M, Kasztovszky Z, Manni A (2010) Prompt Gamma Activation Analysis of bronze fragments from archaeological artefacts. Not Neutroni Luce Sincrotrone 15(1):12–23Google Scholar
  49. 49.
    Corsi J, Maroti B, Re A, Kasztovszky Z, Szentmiklosi L, Torbagyi M, Agostino A, Angelici D, Allegretti S (2015) Compositional analysis of a historical collection of Cisalpine Gaul’s coins kept at the Hungarian National Museum. J Anal At Spectrom 30(3):730–737CrossRefGoogle Scholar
  50. 50.
    Rehren T, Belgya T, Jambon A, Káli G, Kasztovszky Z, Kis Z, Kovács I, Maróti B, Martinón-Torres M, Miniaci G, Pigott VC, Radivojević M, Rosta L, Szentmiklósi L, Szokefalvi-Nagy Z (2013) 5,000 years old Egyptian iron beads made from hammered meteoritic iron. J Archaeol Sci 40(12):4785–4792CrossRefGoogle Scholar
  51. 51.
    Watkinson D, Rimmer M, Kasztovszky Z, Kis Z, Maróti B, Szentmiklósi L (2014) The use of neutron analysis techniques for detecting the concentration and distribution of chloride ions in archaeological iron. Archaeometry 56(5):841–859CrossRefGoogle Scholar
  52. 52.
    Abraham E, Bessou M, Ziegle A, Herve MC, Szentmiklósi L, Kasztovszky Z, Kis Z, Menu M (2014) Terahertz, X-ray and neutron computed tomography of an Eighteenth Dynasty Egyptian sealed pottery. Appl Phys A 117(3):963–972CrossRefGoogle Scholar
  53. 53.
    Prudêncio M, Dias M, Burbidge C, Kasztovszky Z, Marques R, Marques J, Cardoso G, Trindade M, Maróti B, Ruiz F, Esteves L, Matos M, Pais A (2016) PGAA, INAA and luminescence to trace the “history” of “The Panoramic View of Lisbon”: Lisbon before the earthquake of 1755 in painted tiles (Portugal). J Radioanal Nucl Chem 307:541–547CrossRefGoogle Scholar
  54. 54.
    Bernardini F, De Min A, Lenaz D, Kasztovszky Z, Turk P, Velušček A, Szilágyi V, Tuniz C, Montagnari E (2014) Kokelj, mineralogical and chemical constraints on the provenance of Copper Age polished stone axes of ‘Ljubljana Type’ from Caput Adri. Archaeometry 56(2):175–202CrossRefGoogle Scholar
  55. 55.
    Kasztovszky Zs, Kunicki-Goldfinger J (2011) Applicability of prompt gamma activation analysis to glass archaeometry. In: Proceedings of the 37th international symposium on archaeometry, Siena, Italy, 13–16 May 2008, p 83–90Google Scholar
  56. 56.
    Zöldföldi J, Richter S, Kasztovszky Zs, Mihály J (2006) Where does lapis lazuli come from? In: 34th International symposium on archaeometry, Zaragoza, 2004. Insttitución “Fernando el Católico” (C.S.I.C.) Excma. Diputación de Zaragoza, p 353–361Google Scholar
  57. 57.
    Marschall HR, Kasztovszky Z, Gméling K, Altherr R (2005) Chemical analysis of high-pressure metamorphic rocks by PGNAA: comparison with results from XRF and solution ICP-MS. J Radioanal Nucl Chem 265(2):339–348CrossRefGoogle Scholar
  58. 58.
    Marschall HR, Altherr R, Ludwig T, Kalt A, Gméling K, Kasztovszky Z (2006) Partitioning and budget of Li, Be and B in high-pressure metamorphic rocks. Geochim Cosmochim Acta 70(18):4750–4769CrossRefGoogle Scholar
  59. 59.
    Kodolányi J, Pettke T, Spandler C, Kamber BS, Gméling K (2012) Geochemistry of ocean floor and fore-arc serpentinites: constraints on the ultramafic input to subduction zones. J Petrol 53(2):235–270CrossRefGoogle Scholar
  60. 60.
    NIST SRM 57b. Accessed on 5 Jan 2016

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  1. 1.Nuclear Analysis and Radiography Department, Centre for Energy ResearchHungarian Academy of SciencesBudapestHungary
  2. 2.Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II)GarchingGermany

Personalised recommendations