Negative muon induced elemental analysis by muonic X-ray and prompt gamma-ray measurements

  • K. Ninomiya
  • M. Inagaki
  • M. K. Kubo
  • T. Nagatomo
  • W. Higemoto
  • N. Kawamura
  • P. Strasser
  • K. Shimomura
  • Y. Miyake
  • S. Sakamoto
  • A. Shinohara
  • T. Saito
Article

Abstract

When a negatively charged muon stopped in a material, muonic atom, which has one muon in place of an electron in the atomic system, is formed. After muon deexcitation process with muonic X-ray emission, the muon reaches to the muonic 1 s state, and the muon is absorbed in the nucleus. As a result, highly excited nucleus is produced, and the nucleus emits neutrons and gamma-rays. In this work, we determined elemental depth profiling of gold concentrations on archeological sample, an old Japanese coin, by measuring gamma-ray intensities emitted from activated nucleus with various incident muon energies.

Keywords

Muonic atom Muon Elemental analysis Muon nuclear absorption Nuclear activation 

References

  1. 1.
    Vasilopoulou T, Stamatelatos IE, Montoya EH, Bedregal PS, Tsalafoutas I, Bode P (2015) Large sample neutron activation analysis of irregular-shaped pottery artifacts. J Radioanal Nucl Chem 303:853–858CrossRefGoogle Scholar
  2. 2.
    Shirai N, Hidaka Y, Yamaguchi A, Sekimoto S, Ebihara M, Kojima H (2015) Neutron activation analysis of iron meteorites. J Radioanal Nucl Chem 303:1375–1380CrossRefGoogle Scholar
  3. 3.
    Hevesy G, Levi H (1936) Action of slow neutrons on rare earth elements. Nature 137:185CrossRefGoogle Scholar
  4. 4.
    Révay Z (2009) Determining elemental composition using prompt γ activation analysis. Anal Chem 81:6851–6859CrossRefGoogle Scholar
  5. 5.
    Ahmed MR, Al-Najjar S, Al-Amili MA, Al-Assafi N, Rammo N, Demidov AM, Govor LI, Cherepantsev YK (1978) Atlas of gamma-ray spectra from the inelastic scattering of reactor fast neutrons. Atomizdat, MoscowGoogle Scholar
  6. 6.
    Lutz GJ (1971) Photon activation analysis—a review. Anal Chem 43:93–103CrossRefGoogle Scholar
  7. 7.
    Engfer R, Schneuwly H, Vuilleumier JL, Walter HK, Zehnder A (1974) Charge-distribution parameters, isotope shifts, isomer shifts, and magnetic hyperfine constants from muonic atoms. At Data Nucl Data Tables 14:509–597CrossRefGoogle Scholar
  8. 8.
    Suzuki T, Measday DF, Roalsvig JP (1987) Total nuclear capture rates for negative muons. Phys Rev C 35:2212–2223CrossRefGoogle Scholar
  9. 9.
    Measday DF (2001) The nuclear physics of muon capture. Phys Rep 354:243–409CrossRefGoogle Scholar
  10. 10.
    Schneuwly H, Dubler T, Kaeser K, Robert-Tissot B, Schaller LA, Schellenberg L (1978) On the influence of the chemical bond on the relative muonic capture rates in elements of compounds. Phys Lett A 66:188–190CrossRefGoogle Scholar
  11. 11.
    Backenstoss G, Charalambus S, Daniel H, Hamilton WD, Lynen U, Von Der Malsburg C, Poelz G, Povel HP (1971) Nuclear γ-rays following muon capture. Nucl Phys A 162:541–551CrossRefGoogle Scholar
  12. 12.
    Ninomiya K, Ito TU, Higemoto W, Kita M, Shinohara A, Nagatomo T, Kubo MK, Strasser P, Kawamura N, Shimomura K, Miyake Y, Miura T (2011) Negative muon capture on nitrogen oxide molecules. J Korean Phys Soc 59:2917–2920CrossRefGoogle Scholar
  13. 13.
    Yoshida G, Ninomiya K, Higemoto W, Ito TU, Nagatomo T, Strasser P, Kawamura N, Shimomura K, Miyake Y, Miura T, Kubo MK, Shinohara A (2015) Muon capture probability of carbon and oxygen for CO, CO2, and COS under low-pressure gas conditions. J Radioanal Nucl Chem 303:1277–1281CrossRefGoogle Scholar
  14. 14.
    Kubo MK, Moriyama H, Tsuruoka Y, Sakamoto S, Koseto E, Saito T, Nishiyama K (2008) Non-destructive elemental depth-profiling with muonic X-rays. J Radioanal Nucl Chem 278:777–781CrossRefGoogle Scholar
  15. 15.
    Ninomiya K, Nagatomo T, Kubo K, Ito TU, Higemoto W, Kita M, Shinohara A, Strasser P, Kawamura N, Shimomura K, Miyake Y, Saito T (2012) Development of nondestructive and quantitative elemental analysis method using calibration curve between muonic X-ray intensity and elemental composition in bronze. Bull Chem Soc Jpn 85:228–230CrossRefGoogle Scholar
  16. 16.
    Ninomiya K, Kubo MK, Nagatomo T, Higemoto W, Ito TU, Kawamura N, Strasser P, Shimomura K, Miyake Y, Suzuki T, Kobayashi Y, Sakamoto S, Shinohara A, Saito T (2015) Nondestructive elemental depth-profiling analysis by muonic X-ray measurement. Anal Chem 87:4597–4600CrossRefGoogle Scholar
  17. 17.
    Shimomura K, Koda A, Strasser P, Kawamura N, Fujimori H, Makimura S, Higemoto W, Nakahara K, Ishida K, Nishiyama K, Nagamine K, Miyake Y (2009) Superconducting muon channel at J-PARC. Nucl Instrum Methods Phys Res Sect A 600:192–194CrossRefGoogle Scholar
  18. 18.
    Ueda M, Taguchi I, Saito T (1996) Non-destructive analysis of the fineness of Kobans in the Yedo Period, Discussion Paper 1996-E-26. Institute for Monetary and Economic Studies, Bank of Japan, TokyoGoogle Scholar
  19. 19.
    Blachot J (2000) Nuclear data sheets for A = 108. Nucl Data Sheets 91:135–296CrossRefGoogle Scholar
  20. 20.
    Singh B (2006) Nuclear data sheets for A = 194. Nucl Data Sheets 107:1531–1746CrossRefGoogle Scholar
  21. 21.
    Xiaolong H (2007) Nuclear data sheets for A = 196. Nucl Data Sheets 108:1093–1286CrossRefGoogle Scholar
  22. 22.
    Measday DF, Stocki TJ, Tam H (2007) γ rays from muon capture in I, Au and Bi. Phys Rev C 75:045501CrossRefGoogle Scholar
  23. 23.
    Daniel H, Hartmann FJ, Naumann RA (1999) Solid-state effects on Coulomb capture and X-ray cascade of negative muons. Phys Rev A 59:3343–3348CrossRefGoogle Scholar
  24. 24.
    Oshima M, Toh Y, Hatsukawa Y, Koizumi M, Kimura A, Haraga A, Ebihara M, Syshida K (2008) Multiple gamma-ray detection method and its application to nuclear chemistry. J Radioanal Nucl Chem 278:257–262CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  • K. Ninomiya
    • 1
  • M. Inagaki
    • 1
  • M. K. Kubo
    • 2
  • T. Nagatomo
    • 3
  • W. Higemoto
    • 4
  • N. Kawamura
    • 3
  • P. Strasser
    • 3
  • K. Shimomura
    • 3
  • Y. Miyake
    • 3
  • S. Sakamoto
    • 5
  • A. Shinohara
    • 1
  • T. Saito
    • 6
  1. 1.Graduate School of ScienceOsaka UniversityToyonakaJapan
  2. 2.College of Liberal ArtsInternational Christian UniversityMitakaJapan
  3. 3.Institute of Materials Structure ScienceHigh Energy Accelerator Research OrganizationTsukubaJapan
  4. 4.Advanced Science Research CenterJapan Atomic Energy AgencyTokaiJapan
  5. 5.J-PARC CenterJapan Atomic Energy AgencyTokaiJapan
  6. 6.National Museum of Japanese HistorySakuraJapan

Personalised recommendations