Source apportionment by positive matrix factorization on elemental concentration obtained in PM10 and biomonitors collected in the vicinities of a steelworks

  • Joana Lage
  • Hubert Th. Wolterbeek
  • Miguel A. Reis
  • Paula C. Chaves
  • Sílvia Garcia
  • Susana M. Almeida


The objective of this study was to assess the impact of steelworks emissions in its vicinity through chemical element analysis. Two approaches were used: instrumental monitoring and biomonitoring using transplanted lichens. Element contents in filters and lichens were determined by k 0-INAA and PIXE and sources identification was performed by the receptor model positive matrix factorization. PM10 data indicated that the steelworks has an important impact on the air quality, having several sources associated with its processes been identified. Lichen analyses showed that this impact decrease significantly with the distance to the factory.


k0-INAA Steelworks Air pollution PM10 Biomonitors Elements 



The authors gratefully acknowledge Fundação para a Ciência e Tecnologia (FCT) for funding J. Lage Ph.D. Grant SFRH/BD/79084/2011 and S. M. Almeida contract (IF/01078/2013) and the European Community’s Research Fund for Coal and Steel (RFCS) under Grant Agreement No. RFSR-CT-2009-00029. C2TN/IST authors gratefully acknowledge the FCT support through the UID/Multi/04349/2013 project.

Supplementary material

10967_2016_4751_MOESM1_ESM.docx (37 kb)
Supplementary material 1 (DOCX 36 kb)


  1. 1.
    Riccardi R, Bonenti F, Allevi E, Avanzi C, Gnudi A (2015) The steel industry: a mathematical model under environmental regulations. Eur J Oper Res 242:1017–1027CrossRefGoogle Scholar
  2. 2.
    Mohiuddin K, Strezov V, Nelson PF, Stelcer E (2014) Characterization of trace metals in atmospheric particles in the vicinity of iron and steelmaking industries in Australia. Atmos Environ 83:72–79CrossRefGoogle Scholar
  3. 3.
    Hleis D, Fernández-Olmo I, Ledoux F, Kfoury A, Courcot L, Desmonts T et al (2013) Chemical profile identification of fugitive and confined particle emissions from an integrated iron and steelmaking plant. J Hazard Mater 250–251:246–255CrossRefGoogle Scholar
  4. 4.
    Dall’Osto M, Booth MJ, Smith W, Fisher R, Harrison RM (2008) A study of the size distribution and the chemical characterization of airborne particles in the vicinity of a large integrated steelworks. Aerosol Sci Technol 42:981–991CrossRefGoogle Scholar
  5. 5.
    Ciaparra D, Aries E, Booth MJ, Anderson DR, Almeida SM, Harrad S (2009) Characterization of volatile organic compounds and polycyclic aromatic hydrocarbons in the ambient air of steelworks. Atmos Environ 43:2070–2079CrossRefGoogle Scholar
  6. 6.
    Machemer SD (2004) Characterization of airborne and bulk particulate from iron and steel manufacturing facilities. Environ Sci Technol 38:381–389CrossRefGoogle Scholar
  7. 7.
    Querol X, Viana M, Alastuey A, Amato F, Moreno T, Castillo S et al (2007) Source origin of trace elements in PM from regional background, urban and industrial sites of Spain. Atmos Environ 41:7219–7231CrossRefGoogle Scholar
  8. 8.
    Taiwo AM, Beddows DCS, Calzolai G, Harrison RM, Lucarelli F, Nava S et al (2014) Receptor modelling of airborne particulate matter in the vicinity of a major steelworks site. Sci Total Environ 490:488–500CrossRefGoogle Scholar
  9. 9.
    Sammut ML, Noack Y, Rose J (2006) Zinc speciation in steel plant atmospheric emissions: a multi-technical approach. J Geochem Explor 88:239–242CrossRefGoogle Scholar
  10. 10.
    Almeida SM, Silva AV, Sarmento S (2014) Effects of exposure to particles and ozone on hospital admissions for cardiorespiratory diseases in Setúbal, Portugal. J Toxicol Environ Health A 77:837–848CrossRefGoogle Scholar
  11. 11.
    Pope CA III, Schwartz J, Ransom MR (1992) Daily mortality and PM10 pollution in Utah Valley. Arch Environ Health Int J 47:211–217CrossRefGoogle Scholar
  12. 12.
    Pope CA III (1996) Particulate pollution and health: a review of the Utah Valley experience. J Expo Anal Environ Epidemiol 6(1):23–34Google Scholar
  13. 13.
    Hofman J, Samson R (2014) Biomagnetic monitoring as a validation tool for local air quality models: a case for an urban street canyon. Environ Int 70:50–61CrossRefGoogle Scholar
  14. 14.
    Almeida SM, Freitas MC, Reis MA, Pinheiro T, Felix PM, Pio CA (2013) Fifteen years of nuclear techniques application to suspended particulate matter studies. J Radioanal Nucl Chem 297(3):347–356CrossRefGoogle Scholar
  15. 15.
    Freitas MC, Reis MA, Marques AP, Almeida AM, Farinha MM, Oliveira OR, Ventura MG, Pacheco AMG, Barros LIC (2003) Monitoring of environmental contaminants: 10 years of use of k0. J Radioanal Nucl Chem 257(3):621–625CrossRefGoogle Scholar
  16. 16.
    Freitas MC, Farinha MM, Ventura MG, Almeida SM, Reis MA, Pacheco AMG (2005) Atmospheric selenium in an industrialized area of Portugal. J Radioanal Nucl Chem 263(3):711–719CrossRefGoogle Scholar
  17. 17.
    Dung HM, Freitas MC, Blaauw M, Almeida SM, Dionisio I, Canha NH (2010) Quality control and performance evaluation of k0-based neutron activation analysis and the Portuguese research reactor. Nucl Instrum Method A 622:392–398CrossRefGoogle Scholar
  18. 18.
    Almeida SM, Almeida-Silva M, Galinha C, Ramos CA, Lage J, Canha N, Silva AV, Bode P (2014) Assessment of the portuguese k0-INAA laboratory performance by evaluating internal quality control data. J Radioanal Nucl Chem 300:581–587CrossRefGoogle Scholar
  19. 19.
    Freitas M, Reis M, Alves L, Wolterbeek H (2000) Nuclear analytical techniques in atmospheric trace element studies in Portugal. Trace Met Contam Environ 4:187–213CrossRefGoogle Scholar
  20. 20.
    Almeida SM, Lage J, Freitas MC, Pedro AI, Ribeiro T, Silva AV et al (2012) Integration of biomonitoring and instrumental techniques to assess the air quality in an industrial area located in the coastal of central Asturias, Spain. J Toxicol Environ Heal A 75:1392–1403CrossRefGoogle Scholar
  21. 21.
    Lage J, Almeida SM, Reis MA, Chaves PC, Ribeiro T, Garcia S et al (2014) Levels and spatial distribution of airborne chemical elements in a heavy industrial area located in the north of Spain. J Toxicol Environ Health A 77:856–866CrossRefGoogle Scholar
  22. 22.
    Manousakas M, Diapouli E, Papaefthymiou H, Migliori A, Karydas AG, Padilla-Alvarez R (2015) Source apportionment by PMF on elemental concentrations obtained by PIXE analysis of PM10 samples collected at the vicinity of lignite power plants and mines in Megalopolis, Greece. Nucl Instrum Method B 349:114–124CrossRefGoogle Scholar
  23. 23.
    Belis CA, Karagulian F, Larsen BR, Hopke PK (2013) Critical review and meta-analysis of ambient particulate matter source apportionment using receptor models in Europe. Atmos Environ 69:94–108CrossRefGoogle Scholar
  24. 24.
    EPA (US Environmental Protection Agency) (2008) EPA positive matrix factorization (PMF) 3.0 fundamentals & user guide, EPA 600/R-08/108, Washington, USA.Google Scholar
  25. 25.
    Paatero P (1999) The multilinear engine—a table-driven, least squares program for solving multilinear problems, including the n-way parallel factor analysis model. J Comput Graph Stat 8:854–888Google Scholar
  26. 26.
    Almeida SM, Lage J, Fernández B, Garcia S, Reis MA, Chaves PC (2015) Chemical characterization of atmospheric particles and source apportionment in the vicinity of a steelmaking industry. Sci Total Environ 521–522:411–420CrossRefGoogle Scholar
  27. 27.
    Almeida SM, Silva AI, Freitas MC, Dzung HM, Caseiro A, Pio CA (2013) Impact of maritime air mass trajectories on the western european coast urban aerosol. J Toxicol Environ Health Part A 76(4–5):252–262CrossRefGoogle Scholar
  28. 28.
    Almeida SM, Freitas MC, Repolho C, Dionísio I, Dung HM, Pio CA, Alves C, Caseiro A, Pacheco AMG (2009) Evaluating children exposure to air pollutants for an epidemiological study. J Radioanal Nucl Chem 280(2):405–409CrossRefGoogle Scholar
  29. 29.
    EIPPCB, Best Available Techniques (BAT) (2012) Reference document for iron and steel production.Google Scholar
  30. 30.
    Tsai J-H, Lin K-H, Chen C-Y, Ding J-Y, Choa C-G, Chiang H-L (2007) Chemical constituents in particulate emissions from integrated iron and steel facility. J Hazard Mater 147:111–119CrossRefGoogle Scholar
  31. 31.
    Calvo AI, Alves C, Castro A, Pont V, Vicente AM, Fraile R (2013) Research on aerosol sources and chemical composition: past, current and emerging issues. Atmos Res 120–121:1–28CrossRefGoogle Scholar
  32. 32.
    Proctor DM, Fehling KA, Shay EC, Wittemborn JL, Green JJ, Avent C et al (2000) Physical and chemical characteristics of blast furnace, basic oxygen furnace, and electric arc furnace steel industry slags. Environ Sci Technol 34:1576–1582CrossRefGoogle Scholar
  33. 33.
    Almeida SM, Freitas MC, Pio CA (2008) Neutron activation analysis for identification of African mineral dust transport. J Radioanal Nucl Chem 276(1):161–165CrossRefGoogle Scholar
  34. 34.
    Almeida SM, Freitas MC, Repolho C, Dionísio I, Dung HM, Caseiro A, Alves C, Pio CA, Pacheco AMG (2009) Characterizing air particulate matter composition and sources in Lisbon, Portugal. J Radioanal Nucl Chem 281(2):215–218CrossRefGoogle Scholar
  35. 35.
    Le Guyader H, Grolleau AM, Debout V. Corrosion behaviour of copper alloys in natural sea water and polluted sea water.
  36. 36.
    Powell C, Webster P (2012) Copper alloys for marine environment. Copper Development Association, Hemel HempsteadGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  • Joana Lage
    • 1
    • 2
  • Hubert Th. Wolterbeek
    • 2
  • Miguel A. Reis
    • 1
  • Paula C. Chaves
    • 1
  • Sílvia Garcia
    • 3
  • Susana M. Almeida
    • 1
  1. 1.C2TN, Instituto Superior TécnicoUniversidade de LisboaBobadelaPortugal
  2. 2.Department of Radiation Science and Technology, Faculty of Applied SciencesTechnical University of DelftDelftThe Netherlands
  3. 3.Instituto de Soldadura e QualidadePorto SalvoPortugal

Personalised recommendations