Advertisement

Exposure and inhaled dose of susceptible population to chemical elements in atmospheric particles

  • Susana Marta Almeida
  • Carla A. Ramos
  • Marina Almeida-Silva
Article

Abstract

The objective of this study was to assess the exposure and inhaled dose of susceptible populations to chemical elements in atmospheric particles. Particles were sampled in schools, fitness centers and elderly care centers and k 0-INAA was used to determine their chemical composition. Results show that besides the similar element concentrations measured in the outdoor levels of all micro-environments, the inhaled dose experienced by each one of the vulnerable population groups was significantly different, indicating that measurements of outdoor air concentrations do not provide an accurate estimation of the population exposure to particles and specific elements and of the respective dose.

Keywords

k0-INAA Schools Elderly care centers Fitness centers Particles Elements 

Notes

Acknowledgments

The authors gratefully acknowledge Fundação para a Ciência e Tecnologia (FCT) for funding M. Almeida-Silva PhD grant (SFRH/BD/69700/2010), C.A. Ramos PhD grant (SFRH/BD/79277/2011) and S.M. Almeida contract (IF/01078/2013). C2TN/IST authors gratefully acknowledge the FCT support through the UID/Multi/04349/2013 project.

References

  1. 1.
    Almeida SM, Silva AV, Sarmento S (2014) Effects of exposure to particles and ozone on hospital admissions for cardiorespiratory diseases in Setúbal, Portugal. J Toxicol Environ Heal A 77:837–848CrossRefGoogle Scholar
  2. 2.
    WHO (2013) Health effects of particulate matter: policy implications for countries in Eastern Europe, Caucasus and central Asia, Copenhagen, WHO Regional office for EuropeGoogle Scholar
  3. 3.
    IARC (2013) Press release no. 221. Outdoor air pollution a leading environmental cause of cancer deaths. IARC-WHO, 17 Oct 2013Google Scholar
  4. 4.
    Calvo AI, Alves C, Castro A, Pont V, Vicente AM, Fraile R (2013) Research on aerosol sources and chemical composition: past, current and emerging issues. Atmos Res 120–121:1–28CrossRefGoogle Scholar
  5. 5.
    Canha N, Almeida M, Freitas MC, Almeida SM (2011) Seasonal variation of total particulate matter and children respiratory diseases at Lisbon basic schools using passive methods. Proced Environ Sci 4:170–183CrossRefGoogle Scholar
  6. 6.
    Almeida-Silva M, Wolterbeek HTh, Almeida SM (2014) Elderly exposure to indoor air pollutants. Atmos Environ 85:54–63CrossRefGoogle Scholar
  7. 7.
    Ramos C, Viegas C, Cabo-Verde S, Wolterbeek HT, Almeida SM (2015) Characterizing the fungal and bacterial microflora and concentrations in fitness centres. Indoor Built Environ. doi: 10.1177/1420326X15587954 Google Scholar
  8. 8.
    Almeida SM, Freitas MC, Repolho C, Dionísio I, Dung HM, Caseiro A, Alves C, Pio CA, Pacheco AMG (2009) Characterizing air particulate matter composition and sources in Lisbon, Portugal. J Radioanal Nucl Chem 281:215–218CrossRefGoogle Scholar
  9. 9.
    Almeida SM, Freitas MC, Repolho C, Dionísio I, Dung HM, Pio CA, Alves C, Caseiro A, Pacheco AMG (2009) Evaluating Children exposure to air pollutants for an epidemiological study. J Radioanal Nucl Chem 280:405–409CrossRefGoogle Scholar
  10. 10.
    Almeida SM, Silva AI, Freitas MC, Dzung HM, Caseiro A, Pio CA (2013) Impact of maritime air mass trajectories on the western european coast urban aerosol. J Toxicol Environ Heal A 76:252–262CrossRefGoogle Scholar
  11. 11.
    Almeida SM, Freitas MC, Pio CA (2008) Neutron activation analysis for identification of African mineral dust transport. J Radioanal Nucl Chem 276:161–165CrossRefGoogle Scholar
  12. 12.
    Almeida SM, Canha N, Silva A, Freitas MC, Pegas P, Alves C, Evtyugina MG, Pio CA (2011) Children exposure to air particulate matter in indoor of Lisbon primary schools. Atmos Environ 45(40):7594–7599CrossRefGoogle Scholar
  13. 13.
    Almeida-Silva M, Almeida SM, Pegas PN, Nunes T, Alves CA, Wolterbeek HT (2015) Exposure and dose assessment to particle components among an elderly population. Atmos Environ 102:156–166CrossRefGoogle Scholar
  14. 14.
    Ramos C, Wolterbeek HTH, Almeida SM (2014) Exposure to indoor air pollutants during physical activity in fitness centers. Build Environ 82:349–360CrossRefGoogle Scholar
  15. 15.
    EN 12341: 1998 (1998) Air quality—determination of the PM10 fraction of suspended particulate matter—reference method and field test procedure to demonstrate reference equivalence of measurement methods. European Committee for Standardization (CEN), BrusselsGoogle Scholar
  16. 16.
    Almeida SM, Freitas MC, Reis M, Pinheiro T, Felix PM, Pio CA (2013) Fifteen years of nuclear techniques application to suspended particulate matter studies. J Radioanal Nucl Chem 297:347–356CrossRefGoogle Scholar
  17. 17.
    Fernandes AC, Santos JP, Marques JG, Kling A, Ramos AR, Barradas NP (2010) Validation of the Monte Carlo model supporting core conversion of the Portuguese Research Reactor (RPI) for neutron fluence rate determinations. Ann Nucl Energy 37:1139–1145CrossRefGoogle Scholar
  18. 18.
    Almeida SM, Reis MA, Freitas MC, Pio CA (2003) Quality assurance in elemental analysis of airborne particles. Nucl Instrum Methods Phys Res B 207:434–446CrossRefGoogle Scholar
  19. 19.
    Dung HM, Freitas MC, Blaauw M, Almeida SM, Dionisio I, Canha NH (2010) Quality control and performance evaluation of k0-based neutron activation analysis and the Portuguese Research Reactor. Nucl Instrum Methods Phys Res A 622:392–398CrossRefGoogle Scholar
  20. 20.
    Almeida SM, Almeida-Silva M, Galinha C, Ramos CA, Lage J, Canha N, Silva AV, Bode P (2014) Assessment of the Portuguese k0-INAA laboratory performance by evaluating internal quality control data. J Radioanal Nucl Chem 300:581–587CrossRefGoogle Scholar
  21. 21.
    Portaria 353-A/2013 (2013) Ministério do ambiente, ordenamento do território e energia, da saúde e da solidariedade, emprego e segurança socialGoogle Scholar
  22. 22.
    Canha N, Almeida SM, Freitas MC, Wolterbeek HTh, Cardoso J, Pio C, Caseiro A (2014) Impact of wood burning on indoor PM2.5 in a primary school in rural Portugal. Atmos Environ 94:663–670CrossRefGoogle Scholar
  23. 23.
    Canha N, Almeida SM, Freitas MC, Trancoso M, Sousa A, Mouro F, Wolterbeek HTh (2014) Particulate matter analysis in indoor environments of urban and rural primary schools using passive sampling methodology. Atmos Environ 83:21–34CrossRefGoogle Scholar
  24. 24.
    Canha N, Freitas MC, Almeida SM, Almeida M, Ribeiro M, Galinha C, Wolterbeek HTH (2010) Indoor school environment: easy and low cost to assess inorganic pollutants. J Radioanal Nucl Chem 286:495–500CrossRefGoogle Scholar
  25. 25.
    Canha N, Almeida SM, Freitas MC, Täubel M, Hänninen O (2013) Winter ventilation rates at primary schools: comparison between Portugal and Finland. J Toxicol Environ Heal A 76:400–408CrossRefGoogle Scholar
  26. 26.
    United States Environmental Protection Agency (2011) Exposure factors handbook, 2011th edn. Office of Research and Development, Washington, DC 20460 Google Scholar
  27. 27.
    Ramos C, Reis JF, Almeida T, Alves F, Wolterbeek HT, Almeida SM (2015) Estimating the inhaled dose of pollutants during indoor physical activity. Sci Total Environ 527-528C:111–118CrossRefGoogle Scholar
  28. 28.
    Bentayeb M, Simoni M, Baiz N, Norback D, Baldacci S, Maio S, Viegi G, Annesi-Maesano I (2012) Adverse respiratory effects of outdoor air Pollution in the elderly. Int J Tuberc Lung Dis 16(9):1149–1161CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • Susana Marta Almeida
    • 1
  • Carla A. Ramos
    • 1
  • Marina Almeida-Silva
    • 1
  1. 1.Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior TécnicoUniversidade de LisboaBobadela LRSPortugal

Personalised recommendations