Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 309, Issue 2, pp 899–908 | Cite as

Determination of gaseous fission product yields from 14 MeV neutron induced fission of 238U at the National Ignition Facility

  • W. S. Cassata
  • C. A. Velsko
  • W. Stoeffl
  • D. R. Jedlovec
  • A. B. Golod
  • D. A. Shaughnessy
  • C. B. Yeamans
  • E. R. Edwards
  • D. H. G. Schneider
Article

Abstract

We determined fission yields of xenon (133mXe, 135Xe, 135mXe, 137Xe, 138Xe, and 139Xe) resulting from 14 MeV neutron induced fission of depleted uranium at the National Ignition Facility. Measurements begin approximately 20 s after shot time, and yields have been determined for nuclides with half-lives as short as tens of seconds. We determined the relative independent yields of 133mXe, 135Xe, and 135mXe to significantly higher precision than previously reported. The relative fission yields of all nuclides are statistically indistinguishable from values reported by England and Rider (ENDF-349. LA-UR-94-3106, 1994), with exception of the cumulative yield of 139Xe. Considerable differences exist between our measured yields and the JEFF-3.1 database values.

Keywords

Fission yields National Ignition Facility Xenon isotopes Depleted uranium 14 MeV neutrons 

Notes

Acknowledgments

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

References

  1. 1.
    Wahl AC (1988) Nuclear-charge distribution and delayed-neutron yields for thermal-neutron-induced fission of 235U, 233U, and 239Pu and for spontaneous fission of 252Cf. At Data Nucl Data Tables 39(1):1–156CrossRefGoogle Scholar
  2. 2.
    Tommasi J, Delpech M, Grouiller J-P, Zaetta A (1995) Long-lived waste transmutation in reactors. Nucl Technol 111(1):133–148CrossRefGoogle Scholar
  3. 3.
    Aliberti G, Palmiotti G, Salvatores M, Stenberg CG (2004) Impact of nuclear data uncertainties on transmutation of actinides in accelerator-driven assemblies. Nucl Sci Eng 146(1):13–50CrossRefGoogle Scholar
  4. 4.
    Wernsperger B, Schlosser C (2004) Noble gas monitoring within the international monitoring system of the comprehensive nuclear test-ban treaty. Radiat Phys Chem 71(3):775–779CrossRefGoogle Scholar
  5. 5.
    Kalinowski MB, Axelsson A, Bean M, Blanchard X, Bowyer TW, Brachet G, Hebel S, McIntyre JI, Peters J, Pistner C (2010) Discrimination of nuclear explosions against civilian sources based on atmospheric xenon isotopic activity ratios. Pure appl Geophys 167(4–5):517–539CrossRefGoogle Scholar
  6. 6.
    Koohkan MR, Bocquet M, Wu L, Krysta M (2012) Potential of the International Monitoring System radionuclide network for inverse modelling. Atmos Environ 54:557–567CrossRefGoogle Scholar
  7. 7.
    Le Petit G, Cagniant A, Morelle M, Gross P, Achim P, Douysset G, Taffary T, Moulin C (2013) Innovative concept for a major breakthrough in atmospheric radioactive xenon detection for nuclear explosion monitoring. J Radioanal Nucl Chem 298(2):1159–1169CrossRefGoogle Scholar
  8. 8.
    Shaughnessy DA, Velsko CA, Jedlovec DR, Yeamans CB, Moody KJ, Tereshatov E, Stoeffl W, Riddle A (2012) The radiochemical analysis of gaseous samples (RAGS) apparatus for nuclear diagnostics at the National Ignition Facility (invited) a). Rev Sci Instrum 83(10):10D917CrossRefGoogle Scholar
  9. 9.
    Gharibyan N, Moody KJ, Shaughnessy DA (2015) Non-destructive analysis of DU content in the NIF hohlraums. LLNL-TR-680561Google Scholar
  10. 10.
    England T, Rider B (1994) Evaluation and compilation of fission yields, ENDF-349. LA-UR-94-3106Google Scholar
  11. 11.
    Koning A, Forrest R, Kellett M, Mills R, Henriksson H, Rugama Y (2006) The JEFF-3.1 nuclear data library, JEFF report 21, NEA Publication No. 6190Google Scholar
  12. 12.
    Nikroo A, Pontelandolfo JM, Castillo ER (2002) Coating and mandrel effects on fabrication of glow discharge polymer NIF scale indirect drive capsules. Fusion Sci Technol 41(3P1):220–225CrossRefGoogle Scholar
  13. 13.
    Grim GP, Rundberg R, Hayes AC, Jungman G, Boswell M, Klein A, Wilhelmy J, Tonchev A, Yeamans CB (2014) Measurement of reaction-in-flight neutrons using thulium activation at the National Ignition Facility. In: SPIE Optical Engineering + Applications. International Society for Optics and Photonics, pp 921108–921113Google Scholar
  14. 14.
    Hatarik R, Sayre DB, Caggiano JA, Phillips M, Eckart MJ, Grim GP, Hartouni E, Mcnaney JM (2015) Analysis of the neutron time-of-flight spectra at the National Ignition Facility (in review)Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  • W. S. Cassata
    • 1
  • C. A. Velsko
    • 1
  • W. Stoeffl
    • 1
  • D. R. Jedlovec
    • 1
  • A. B. Golod
    • 1
  • D. A. Shaughnessy
    • 1
  • C. B. Yeamans
    • 1
  • E. R. Edwards
    • 2
  • D. H. G. Schneider
    • 1
  1. 1.Lawrence Livermore National LaboratoryLivermoreUSA
  2. 2.Department of Nuclear EngineeringUniversity of California at BerkeleyBerkeleyUSA

Personalised recommendations