Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 307, Issue 3, pp 2459–2463 | Cite as

Quality assurance of temporal variability of natural decay chain and neutron induced background for low-level NORM analysis

  • Michael Yoho
  • Donivan R. Porterfield
  • Sheldon Landsberger
Article
  • 104 Downloads

Abstract

Twenty-one high purity germanium (HPGe) background spectra were collected over 2 years at Los Alamos National Laboratory. A quality assurance methodology was developed to monitor spectral background levels from thermal and fast neutron flux levels and naturally occurring radioactive material decay series radionuclides. 238U decay products above 222Rn demonstrated minimal temporal variability beyond that expected from counting statistics. 238U and 232Th progeny below Rn gas displayed at most twice the expected variability. Further, an analysis of the 139 keV 74Ge(n, γ) and 691 keV 72Ge(n, n′) spectral features demonstrated temporal stability for both thermal and fast neutron fluxes.

Keywords

NORM Neutron Background Quality assurance HPGe 

Notes

Acknowledgments

This material is based upon work supported by the U.S. Department of Homeland Security under Grant Award Number, 2012-DN-130-NF0001. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the U.S. Department of Homeland Security.

References

  1. 1.
    Bossew P (2005) A very long-term HPGe-background gamma spectrum. Appl Radiat Isot 62:635–644CrossRefGoogle Scholar
  2. 2.
    Reichhart L, Lindote A, Akimov DY, Araújo HM, Barnes EJ, Belov VA, Walker RJ (2013) Measurement and simulation of the muon-induced neutron yield in lead. Astropart Phys 47:67–76CrossRefGoogle Scholar
  3. 3.
    Jovančević N, Krmar M, Mrda D, Slivka J, Bikit I (2010) Neutron induced background gamma activity in low-level Ge-spectroscopy systems. Nucl Instrum Meth Phys Res A 612:303–308CrossRefGoogle Scholar
  4. 4.
    Horne S, Jackman KR, Landsberger S (2013) Comparison of background gamma-ray spectra between Los Alamos, New Mexico and Austin. Texas. J Radioanal Nucl Chem 296:349–355CrossRefGoogle Scholar
  5. 5.
    Heusser G (1996) Cosmic ray interaction study with low-level Ge-spectrometry. Nucl Instrum Meth Phys Res A 369:539–543CrossRefGoogle Scholar
  6. 6.
    Gilmore GR (2008) Appendix D: gamma-ray energies in the detector background and the environment. In: Griffiths Peter R (ed) Practical gamma-ray spectrometry. John Wiley & Sons Ltd, Chichester, pp 361–364CrossRefGoogle Scholar
  7. 7.
    Škoro GP, Aničin IV, Kukoč AH, Krmpotić D, Adžić P, Vukanović R, Župančić M (1992) Environmental neutrons as seen by a germanium gamma-ray spectrometer. Nucl Instrum Meth Phys Res A 316:333–336CrossRefGoogle Scholar
  8. 8.
    Seifert A, Hensley WK, Siciliano ER, Pitts WK (2007) Fast neutron sensitivity with HPGe. In: Nuclear science symposium conference record 2007. NSS' 07. IEEE, Oct. 26 2007–Nov. 3 2007, pp 1175–1180Google Scholar
  9. 9.
    Press WH (2007) Numerical recipes 3rd edition: the art of scientific computing. Cambridge University Press, CambridgeGoogle Scholar
  10. 10.
    Donaldson TS (1966) Power of the F-test for nonnormal distributions and unequal error variances. Rand Corporation, New yorkGoogle Scholar
  11. 11.
    Hull EL, Pehl RH, Madden NW, Luke PN, Cork CP, Malone DL, Friesel DL (1995) Temperature sensitivity of surface channel effects on high-purity germanium detectors. Nucl Instrum Meth Phys Res A 364:488–495CrossRefGoogle Scholar
  12. 12.
    Huy NQ (2011) Dead-layer thickness effect for gamma spectra measured in an HPGe p-type detector. Nucl Instrum Meth Phys Res A 641:101–104CrossRefGoogle Scholar
  13. 13.
    Huy NQ, Binh DQ, An VX (2007) Study on the increase of inactive germanium layer in a high-purity germanium detector after a long time operation applying MCNP code. Nucl Instrum Meth Phys Res A 573:384–388CrossRefGoogle Scholar
  14. 14.
    Boson J, Ågren G, Johansson L (2008) A detailed investigation of HPGe detector response for improved Monte Carlo efficiency calculations. Nucl Instrum Meth Phys Res A 587:304–314CrossRefGoogle Scholar
  15. 15.
    Meierhofer G, Grabmayr P, Jochum J, Kudejova P, Canella L, Jolie J (2010) Thermal neutron capture cross section of 74Ge. Phys Rev C 81. doi: 10.1103/PhysRevC.81.027603

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • Michael Yoho
    • 1
  • Donivan R. Porterfield
    • 2
  • Sheldon Landsberger
    • 1
  1. 1.Nuclear Engineering Teaching Lab, Department of Mechanical Engineering, Nuclear Engineering ProgramThe University of Texas at AustinAustinUSA
  2. 2.Los Alamos National LaboratoryLos AlamosUSA

Personalised recommendations