Advertisement

Efficient radiolabeling of rutin with 125I and biodistribution study of radiolabeled rutin

  • Mi Hee Choi
  • Jong Kook Rho
  • Jung Ae Kang
  • Ha Eun Shim
  • You Ree Nam
  • Seonhye Yoon
  • Hye Rim Kim
  • Dae Seong Choi
  • Sang Hyun Park
  • Beom-Su Jang
  • Jongho JeonEmail author
Article

Abstract

The purpose of the current research is to synthesize radiolabeled rutin for biodistribution study and SPECT/CT image of rutin. The optimized radiolabeling condition provided 125I-labeled rutin with 53.5 % of radiochemical yield. Most of orally administered 125I-labeled rutin was initially found in the stomach and small intestine and a portion of the product was then distributed in internal organs. While intravenously injected 125I-labeled rutin was accumulated in liver and then a large part of it was transferred to small intestine. The present results provided an efficient radiolabeling method of flavonoid glycoside as well as quantitative organ distribution of rutin.

Keywords

Rutin Radiolabeling 125SPECT/CT Biodistribution 

Notes

Acknowledgments

This work was supported by the National Research Foundation of Korea grant funded by the Korea government (Grant Nos. 2012M2B2B1055245 and 2012M2A2A6011335) and Korea Atomic Energy Research Institute.

References

  1. 1.
    Dai J, Mumper RJ (2010) Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 15(10):7313–7352CrossRefGoogle Scholar
  2. 2.
    Cushnie TTP, Lamb AJ (2005) Antimicrobial activity of flavonoids. Int J Antimicrob Agents 26(5):343–356CrossRefGoogle Scholar
  3. 3.
    Havsteen B (1983) Flavonoids, a class of natural products of high pharmacological potency. Biochem Pharmacol 32(7):1141–1148CrossRefGoogle Scholar
  4. 4.
    Manthey JA, Buslig BS (1998) Flavonoids in the living system. Plenum Press, New YorkCrossRefGoogle Scholar
  5. 5.
    Chua LS (2013) A review on plant-based rutin extraction methods and its pharmacological activities. J Ethnopharmacol 150(3):805–817CrossRefGoogle Scholar
  6. 6.
    Sharma S, Ali A, Ali J, Sahni JK, Baboota S (2013) Rutin: therapeutic potential and recent advances in drug delivery. Expert Opin Investig Drugs 22(8):1063–1079CrossRefGoogle Scholar
  7. 7.
    Al-Dhabi NA, Arasu VM, Park CH, Park SU (2015) An up-to-date review of rutin and its biological and pharmacological activities. EXCLI Journal 14:59–63Google Scholar
  8. 8.
    Manach C, Williamson G, Morand C, Scalbert A, Rémésy C (2005) Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am J Clin Nutr 81(1):230S–242SGoogle Scholar
  9. 9.
    Zhang X, Song J, Shi X, Miao S, Li Y, Wen A (2013) Absorption and metabolism characteristics of rutin in Caco-2 cells. Scientific World J 2013: Article ID 382350Google Scholar
  10. 10.
    Chen I-L, Tsai Y-J, Huang C-M, Tsai T-H (2010) Lymphatic absorption of quercetin and rutin in rat and their pharmacokinetics in systemic plasma. J Agric Food Chem 58(1):546–551CrossRefGoogle Scholar
  11. 11.
    Erlund I, Kosonen T, Alfthan G, Mäenpää J, Perttunen K, Kenraali J, Parantainen J, Aro A (2000) Pharmacokinetics of quercetin from quercetin aglycone and rutin in healthy volunteers. Eur J Clin Pharmacol 56(8):545–553CrossRefGoogle Scholar
  12. 12.
    Kumar P, Singh B, Ghai A, Hazari PP, Mittal BR, Mishra AK (2015) Development of a single vial kit formulation of [99mTc]-labeled doxorubicin for tumor imaging and treatment response assessment-preclinical evaluation and preliminary human results. J Label Compd Radiopharm. doi: 10.1002/jlcr.3293 Google Scholar
  13. 13.
    Shimizu K, Asakawa T, Harada N, Fukumoto D, Tsukada H, Asai T, Yamada S, Kan T, Oku N (2014) Use of positron emission tomography for real-time imaging of biodistribution of green tea catechin. PLoS ONE 9(2):e85520CrossRefGoogle Scholar
  14. 14.
    Hoehne A, Behera D, Parsons WH, James ML, Shen B, Borgohain P, Bodapati D, Prabhakar A, Gambhir SS, Yeomans DC, Biswal S, Chin FT, Du Bois J (2013) A 18F-labeled saxitoxin derivative for in vivo pet-mr imaging of voltage-gated sodium channel expression following nerve injury. J Am Soc Chem 135(48):18012–18015CrossRefGoogle Scholar
  15. 15.
    Cozikova D, Laznickova A, Hermannova M, Svanovsky E, Palek L, Buffa R, Sedova P, Koppova R, Petrik M, Smejkalova D, Laznicek M, Velebny V (2010) Preparation and the kinetic stability of hyaluronan radiolabeled with 111In, 125I and 14C. J Pharm Biomed Anal 52(4):517–524CrossRefGoogle Scholar
  16. 16.
    Hosseinimehr SJ, Ahmadi A, Taghvai R (2010) Preparation and biodistribution study of technetium-99m-labeled quercetin as a potential radical scavenging agent. J Radioanal Nucl Chem 284(3):563–566CrossRefGoogle Scholar
  17. 17.
    Roh EJ, Park YH, Song CE, Oh S-J, Choe YS, Kim B-T, Chi DY, Kim D (2000) Radiolabeling of Paclitaxel with Electrophilic 123I. Bioorg Med Chem 8(1):65–68CrossRefGoogle Scholar
  18. 18.
    Barolli MG, Pomilio AB (1997) Synthesis of [131-I]-iodinated quercetin. J Label Compds Radiopharm 39(11):927–933CrossRefGoogle Scholar
  19. 19.
    Kim SK, Ham I, Bu Y, Kim H, Cho JH, Choi H (2008) Study on the attributive channel theory of herbal medicine by the pharmacodynamics research of I-131 labelled hesperetin. Korea J Herbol 23(1):117–125Google Scholar
  20. 20.
    Seyitoglu B, Lambrecht FY, Durkan K (2009) Labeling of apigenin with 131I and bioactivity of 131I-apigenin in male and female rats. J Radioanal Nucl Chem 279(3):867–873CrossRefGoogle Scholar
  21. 21.
    Lambrecht FY, Yilmaz O, Bayrak E, Kocagozoglu G, Durkan K (2010) Could be radiolabeled flavonoid used to evaluate infection? J Radioanal Nucl Chem 283(2):503–506CrossRefGoogle Scholar
  22. 22.
    Diao Y, Zhao W, Li Y, Liao L, Wang O, Liu J, Zhao X, Yu C, Cui Z (2014) Radiolabeling of EGCG with 125I and its biodistribution in mice. J Radioanal Nucl Chem 301(1):167–173CrossRefGoogle Scholar
  23. 23.
    Jeon J, Ma S-Y, Choi D et al (2015) Radiosynthesis of 123I-labeled hesperetin for biodistribution study of orally administered hesperetin. J Radioanal Nucl Chem. doi: 10.1007/s10967-015-4093-6 Google Scholar
  24. 24.
    Hollman PCH, de Vries JHM, van Leeuwen SD, Mengelers MJB, Katan MB (1995) Absorption of dietary quercetin glycosides and quercetin in healthy ileostomy volunteers. Am J Clin Nutr 62(6):1276–1283Google Scholar
  25. 25.
    Manach C, Morand C, Demigné C, Texier O, Régérat F, Rémésy C (1997) Bioavailability of rutin and quercetin in rats. FEBS Lett 409(1):12–16CrossRefGoogle Scholar
  26. 26.
    Carbonaro M, Grant G (2005) Absorption of quercetin and rutin in rat small intestine. Ann Nutr Metab 49(3):178–182CrossRefGoogle Scholar
  27. 27.
    Cervantes-Laurean D, Schramm DD, Jacobson EL, Halaweish I, Bruckner GG, Boissonneault GA (2006) Inhibition of advanced glycation end product formation on collagen by rutin and its metabolites. J Nutr Biochem 17(8):531–540CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • Mi Hee Choi
    • 1
  • Jong Kook Rho
    • 1
  • Jung Ae Kang
    • 1
  • Ha Eun Shim
    • 1
  • You Ree Nam
    • 1
  • Seonhye Yoon
    • 1
    • 2
  • Hye Rim Kim
    • 1
  • Dae Seong Choi
    • 1
  • Sang Hyun Park
    • 1
    • 2
  • Beom-Su Jang
    • 1
    • 2
  • Jongho Jeon
    • 1
    • 2
    Email author
  1. 1.Advanced Radiation Technology InstituteKorea Atomic Energy Research InstituteJeongeupRepublic of Korea
  2. 2.Department of Radiation Biotechnology and Applied Radioisotope ScienceUniversity of Science and TechnologyDaejeonRepublic of Korea

Personalised recommendations