Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 307, Issue 3, pp 2487–2494 | Cite as

Improved precision and accuracy in quantifying plutonium isotope ratios by RIMS

  • B. H. IsselhardtEmail author
  • M. R. Savina
  • A. Kucher
  • S. D. Gates
  • K. B. Knight
  • I. D. Hutcheon
Article

Abstract

Resonance ionization mass spectrometry (RIMS) holds the promise of rapid, isobar-free quantification of actinide isotope ratios in as-received materials (i.e. not chemically purified). Recent progress in achieving this potential using two Pu test materials is presented. RIMS measurements were conducted multiple times over a period of two months on two different Pu solutions deposited on metal surfaces. Measurements were bracketed with a Pu isotopic standard, and yielded absolute accuracies of the measured 240Pu/239Pu ratios of 0.7 and 0.58 %, with precisions (95 % confidence intervals) of 1.49 and 0.91 %. The minor isotope 238Pu was also quantified despite the presence of a significant quantity of 238U in the samples.

Keywords

Resonance ionization mass spectrometry Nuclear forensics Plutonium Isotope ratios Laser post-ionization 

Notes

Acknowledgments

The authors dedicate this work to the memory and inspiration of our mentor Dr. Ian D. Hutcheon, without whom this work would not have been possible. The authors would also like to thank Dr. Roger Henderson, Dr. Ross Williams, Dr. Amy Gaffney for their help in sample preparation and sample characterization. This work was funded by the U.S. Department of Homeland Security National Technical Nuclear Forensics Center and Laboratory Directed Research and Development Program at LLNL under project 14-ER-082. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. The CHARISMA instrument at Argonne is supported by the U.S. Department of Energy, Basic Energy Sciences, Division of Material Sciences and Engineering under Award No. DE-AC02-06CH11357. LLNL-JRNL-674877.

References

  1. 1.
    Hou X, Roos P (2008) Critical comparison of radiometric and mass spectrometric methods for the determination of radionuclides in environmental, biological and nuclear waste samples. Anal Chim Acta 608:105–139CrossRefGoogle Scholar
  2. 2.
    Pitois A, Heras LAdL, Betti M (2008) Determination of fission products in nuclear samples by capillary electrophoresis-inductively coupled plasma mass spectrometry (CE-ICP-MS). Int J Mass Spectrom 270(3):118–126. doi: 10.1016/j.ijms.2007.11.012 CrossRefGoogle Scholar
  3. 3.
    Günther-Leopold I, Waldis JK, Wernli B, Kopajtic Z (2005) Measurement of plutonium isotope ratios in nuclear fuel samples by HPLC-MC-ICP-MS. Int J Mass Spectrom 242(2–3):197–202. doi: 10.1016/j.ijms.2004.11.007 CrossRefGoogle Scholar
  4. 4.
    Ranebo Y, Hedberg PML, Whitehouse MJ, Ingeneri K, Littmann S (2009) Improved isotopic SIMS measurements of uranium particles for nuclear safeguard purposes. J Anal At Spectrom 24(3):277–287. doi: 10.1039/b810474c CrossRefGoogle Scholar
  5. 5.
    Ranebo Y, Niagolova N, Erdmann N, Eriksson M, Tamborini G, Betti M (2010) Production and characterization of monodisperse plutonium, uranium, and mixed uranium-plutonium particles for nuclear safeguard applications. Anal Chem 82(10):4055–4062. doi: 10.1021/ac9029295 CrossRefGoogle Scholar
  6. 6.
    Savina MR, Pellin MJ, Tripa CE, Veryovkin IV, Calaway WF, Davis AM (2003) Analyzing individual presolar grains with CHARISMA. Geochim Cosmochim Acta 67(17):3215–3225CrossRefGoogle Scholar
  7. 7.
    Wunderlich RK, Hutcheon ID, Wasserburg GJ, Blake GA (1992) Laser-induced isotopic selectivity in the resonance ionization of osmium. Int J Mass Spectrom Ion Process 115(2–3):123–155CrossRefGoogle Scholar
  8. 8.
    Wunderlich RK, Wasserburg GJ, Hutcheon ID, Blake GA (1993) Laser-induced isotopic effects in titanium resonance ionization. Anal Chem 65(10):1411–1418CrossRefGoogle Scholar
  9. 9.
    Isselhardt BH, Savina MR, Knight KB, Pellin MJ, Hutcheon ID, Prussin SG (2011) Improving precision in RIMS: the influence of bandwidth in uranium isotope ratio measurements. Anal Chem 83:2469–2475. doi: 10.1021/ac102586v CrossRefGoogle Scholar
  10. 10.
    Levine J, Savina M, Stephan T, Dauphas N, Davis AM, Knight K, Pellin M (2009) Resonance ionization mass spectrometry for precise measurements of isotope ratios. Int J Mass Spectrom 288:36–43CrossRefGoogle Scholar
  11. 11.
    Levine J, Savina M, Stephan T, Pellin M Improvements in RIMS Isotopic Precision: Applications to in situ atom-limited isotopic analyses In: Iguchi T, Watanabe K (eds) 4th International Conference on Laser Probing, Nagoya, Japan, 2009. American Institute of Physics, pp 90–95Google Scholar
  12. 12.
    Donohue DL, Smith DH, Young JP, McKown HS, Pritchard CA (1984) Isotopic analysis of uranium and plutonium mixtures by resonance ionization mass spectrometry. Anal Chem 56(3):379–381CrossRefGoogle Scholar
  13. 13.
    Gruning C, Huber G, Klopp P, Kratz JV, Kunz P, Passler G, Trautmann N, Waldek A, Wendt K (2004) Resonance ionization mass spectrometry for ultratrace analysis of plutonium with a new solid state laser system. Int J Mass Spectrom 235(2):171CrossRefGoogle Scholar
  14. 14.
    Raeder S, Hakimi A, Stöbener N, Trautmann N, Wendt K (2012) Detection of plutonium isotopes at lowest quantities using in-source resonance ionization mass spectrometry. Anal Bioanal Chem 404(8):2163–2172. doi: 10.1007/s00216-012-6238-6 CrossRefGoogle Scholar
  15. 15.
    Trautmann N, Passler G, Wendt KDA (2004) Ultratrace analysis and isotope ratio measurements of long-lived radioisotopes by resonance ionization mass spectrometry (RIMS). Anal Bioanal Chem 378(2):348–355. doi: 10.1007/s00216-003-2183-8 CrossRefGoogle Scholar
  16. 16.
    Stephan T, Zehnpfenning J, Benninghoven A (1994) Correction of dead time effects in time-of-flight mass spectrometry. J Vacuum Sci Technol A 12(2):405–410CrossRefGoogle Scholar
  17. 17.
    Stephan T, Heck PR, Isheim D, Lewis JB (2015) Correction of dead time effects in laser-induced desorption time-of-flight mass spectrometry: applications in atom probe tomography. Int J Mass Spectrom 379:46–51. doi: 10.1016/j.ijms.2014.12.006 CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • B. H. Isselhardt
    • 1
    Email author
  • M. R. Savina
    • 1
    • 2
  • A. Kucher
    • 1
  • S. D. Gates
    • 1
  • K. B. Knight
    • 1
  • I. D. Hutcheon
    • 1
  1. 1.Lawrence Livermore National LaboratoryLivermoreUSA
  2. 2.Argonne National LaboratoryArgonneUSA

Personalised recommendations