Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 307, Issue 3, pp 1841–1846 | Cite as

On the formation of non-radioactive copper during the production of 64Cu via proton and deuteron-induced nuclear reactions on enriched 64Ni targets

  • Ferenc SzelecsényiEmail author
  • Gideon F. Steyn
  • Zoltán Kovács
Article

Abstract

Routine production of 64Cu commonly exploits the 64Ni(p,n) or 64Ni(d,2n) reactions. Above specific threshold energies, however, non-radioactive 63Cu and/or 65Cu are also co-produced. The non-radioactive (cold) Cu can significantly decrease the specific activity (SA) of 64Cu-labelled radiopharmaceuticals. Based on nuclear model calculations for the formation of non-radioactive Cu isotopes, theoretical specific activities (TSA) for 64Cu were estimated. Reported current production methods, however, often yield SA values that are lower than the corresponding TSA predictions by more than an order of magnitude. Most of the non-radioactive Cu causing this has been found to originate from sources other than co-production, indicating that there is still significant potential for method improvement.

Keywords

64Ni target Proton and deuteron reactions ALICE 2014 calculations TENDL 2014 library Non-radioactive Cu formation Specific activity of 64Cu 

Notes

Acknowledgments

The Hungarian authors wish to thank the financial support by the Hungarian Research Foundation, (Budapest, OTKA K108669).

References

  1. 1.
    Qaim SM (2015) J Radioanal Nucl Chem 305:233–245CrossRefGoogle Scholar
  2. 2.
    McCarthy DW, Shefer RE, Klinkowstein RE, Bass LA, Margeneau WH, Cutler CS, Anderson CJ, Welch MJ (1997) Nucl Med Biol 24:35–43CrossRefGoogle Scholar
  3. 3.
    Thieme S, Walther M, Pietzsch H-J, Henniger J, Preusche S, Mading P, Steinbach J (2012) Appl Radiat Isot 70:602–608CrossRefGoogle Scholar
  4. 4.
    Jeffery CM, Smith SV, Asad AH, Chan S, Price RI (2012) AIP Conf Proc 1509:84–90CrossRefGoogle Scholar
  5. 5.
    Walther M, Preusche S, Fuechtner F, Pietzsch HJ, Steinbach J (2012) AIP Conf Proc 1509:81–83CrossRefGoogle Scholar
  6. 6.
    Koning AJ, Rochman D (2012) Nucl Data Sheets 113:2841–2934CrossRefGoogle Scholar
  7. 7.
    Koning AJ, Rochman D, van der Marck D, Kopecky SJ, Sublet JCh, Pomp S, Sjöstrand H, Forrest R, Bauge E, Henriksson H, Cabellos O, Goriely S, Leppanen J, Leeb H, Plompen A, Mills R (2014) TENDL 2014: TALYS-based evaluated nuclear data library. www.talys.eu
  8. 8.
    Blann M, Konobeev AY, Wilson WB, Mashnik SG, Manual for code alice, July 2008; ALICE 2014: RSICC code package PSR-550. https://rsicc.ornl.gov
  9. 9.
    Blann M (1996) Phys Rev C 54:1341–1349CrossRefGoogle Scholar
  10. 10.
    Adam Rebeles R, van den Winkel P, Hermanne A, Tárkányi F (2009) Nucl Instrum Methods B 267:457–461CrossRefGoogle Scholar
  11. 11.
    Szelecsényi F, Blessing G, Qaim SM (1993) Appl Radiat Isot 44:575–580CrossRefGoogle Scholar
  12. 12.
    Daraban L, Adam Rebeles R, Hermanne A (2009) Appl Radiat Isot 67:506–510CrossRefGoogle Scholar
  13. 13.
    Hermanne A, Tárkányi F, Takács S, Kovalev SF, Ignatyuk A (2007) Nucl Instrum Methods B 258:308–312CrossRefGoogle Scholar
  14. 14.
    West HI, Lanier RG, Mustafa MG, Nuckolls RM, Nagle RJ, O’Brien H (1993) Report UCRL-ID-115738 (1993), p 3-1–3-17Google Scholar
  15. 15.
    Uddin MS, Baba M, Hagiwara M, Tárkányi F, Ditrói F (2007) Radiochim Acta 95:187–192CrossRefGoogle Scholar
  16. 16.
    Tárkányi F, Ditrói F, Takács S, Csikai J, Mahunka I, Uddin MS, Hagiwara M, Baba M, Ido T, Hermanne A, Sonck M, Shubin Yu, Dityuk AI (2005) AIP Conf Proc 769:1658–1661CrossRefGoogle Scholar
  17. 17.
    Experimental nuclear reaction data library (EXFOR) (2015) Experimental nuclear reaction data library (EXFOR) database version of March 16, 2015. http://www-nds.iaea.org
  18. 18.
    Lapi SE, Welch MJ (2013) Nucl Med Biol 40:314–320CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • Ferenc Szelecsényi
    • 1
    Email author
  • Gideon F. Steyn
    • 2
  • Zoltán Kovács
    • 1
  1. 1.Cyclotron Application DepartmentInstitute for Nuclear Research of the Hungarian Academy of Sciences, ATOMKIDebrecenHungary
  2. 2.iThemba Laboratory for Accelerator Based SciencesSomerset WestSouth Africa

Personalised recommendations