Sorption behavior of Np(V) on illite, shale and MX-80 in high ionic strength solutions

  • Shinya Nagasaki
  • Takumi Saito
  • Tammy Tianxiao Yang


Sorption of Np(V) on illite, shale and MX-80 under oxidizing conditions were first studied in two types of high ionic strength solutions: (i) a reference brine solution (SR-270-PW) with an ionic strength of 6.0 M, and (ii) Na–Ca–Cl solutions. The effects of pHc, Na/Ca ratio, and ionic strength on Np(V) sorption in Na–Ca–Cl solutions were investigated. The Kd values and the sorption isotherms in SR-270-PW and Na–Ca–Cl solutions were also evaluated.


Np(V) Sorption High ionic strength solutions Illite Shale MX-80 



This work is funded by the Nuclear Waste Management Organization and the Natural Science and Engineering Research Council of Canada, Discovery Grant Program (RGPIN-2014-05732). The authors wish to acknowledge Dr. Akira Kirishima (Tohoku University) for his valuable comments on the spectroscopic measurement, the molar absorption coefficient of Np(V), and the Np oxidation state adjustment to Np(V). The authors would like to thank Dr. Monique Hobbs of NWMO for valuable discussion and review of this manuscript. The constructive and valuable reviews by two anonymous referees are highly appreciated.

Supplementary material

10967_2015_4332_MOESM1_ESM.docx (18 kb)
Supplementary material 1 (DOCX 18 kb)


  1. 1.
    Hobbs M Y, Frape S K, Shouakar-Stash O, Kennel LR (2011) Regional hydrogeochemistry—Southern Ontario, NWMO DGR-TR-2011-12, Toronto, CanadaGoogle Scholar
  2. 2.
    Vilks P (2011) Sorption of selected radionuclides on sedimentary rocks in saline conditions—literature review, Nuclear Waste Management Organization technical report NWMO TR-2011-12, Toronto, CanadaGoogle Scholar
  3. 3.
    Geckeis H, Lützenkirchen J, Polly R, Rabung T, Schmidt M (2013) Mineral-water interface reactions of actinides. Chem Rev 113:1016–1062CrossRefGoogle Scholar
  4. 4.
    Zavarin M, Powell BA, Bourbin M, Zhao PH, Kersting AB (2012) Np(V) and Pu(V) ion exchange and surface-mediated reduction mechanisms on montmorillonite. Environ Sci Technol 46:2692–2698CrossRefGoogle Scholar
  5. 5.
    Chapman N, Apted M, Aspinall W, Berryman K, Cloos M, Connor C, Connor L, Jaquet O, Kiyosugi K, Scourse E, Sparks S, Stirling M, Wallace L, Goto J (2012) TOPAZ Project long-term tectonic hazard to geological repositories. Nuclear Waste Management Organization of Japan technical report NUMO-TR-12-05, Tokyo, JapanGoogle Scholar
  6. 6.
    Ahn T, Ikeda T, Ohe T, Kanno T, Sakamoto Y, Chiba T, Tsukamoto M, Nakayama S, Nagasaki S, Banno K, Fujita T (1995) Quantitative performance allocation of multi-barrier system for HLW disposal. J At Energy Soc Jpn 37:59–77 (in Japanese) CrossRefGoogle Scholar
  7. 7.
    National Academy of Science (1983) A study of the isolation for geologic disposal of radioactive wastes, Waste Isolation Systems Panels, Board on Radioactive Waste Management, Washington DC, USAGoogle Scholar
  8. 8.
    Vilks P (in preparation) Sorption of selected radionuclides on sedimentary rocks in saline conditions—updated sorption values. Nuclear Waste Management Organization technical report, Toronto, CanadaGoogle Scholar
  9. 9.
    Neck V, Kim JI (2001) Solubility and hydrolysis of tetravalent actinides. Radiochim Acta 89:1–16CrossRefGoogle Scholar
  10. 10.
    Japan Atomic Energy Agency (2000) H12: Project to establish the scientific and technical basis for HLW disposal in Japan, Supporting report 3: Safety assessment of the geological disposal system. The Japan Nuclear Cycle Development Institute technical note, JNC TN 1410 2000-004, Tokyo, JapanGoogle Scholar
  11. 11.
    Choppin GR (2006) Environmental behavior of actinides. Czechoslovak J Phys 56:D13–D21CrossRefGoogle Scholar
  12. 12.
    Itagaki H, Nakayama S, Tanaka S, Yamawaki M (1992) Effect of ionic strength on the solubility of neptunium(V) hydroxide. Radiochim Acta 58(59):61–66Google Scholar
  13. 13.
    Nagasaki S, Tanaka S, Suzuki A (1998) Geochemical behavior of actinides in high-level radioactive waste disposal. Prog Nucl Energy 32:141–161CrossRefGoogle Scholar
  14. 14.
    Marsac R, Lal Banik N, Lützenkirchen J, Marquardt CM, Dardenne K, Schild D, Rothe J, Diascorn A, Kupcik T, Schäfer T, Geckeis H (2015) Neptunium redox speciation at the illite surface. Geochim et Cosmochim Acta 152:39–51CrossRefGoogle Scholar
  15. 15.
    Altmaier M, Gaona X, Fanghänel Th (2013) Recent advances in aqueous actinide chemistry and thermodynamics. Chem Rev 113:901–943CrossRefGoogle Scholar
  16. 16.
    Knope KE, Soderholm L (2013) Solution and solid-state structural chemistry of actinide hydrates and their hydrolysis and condensation product. Chem Rev 113:944–994CrossRefGoogle Scholar
  17. 17.
    Walther C, Denecke A (2013) Actinide colloids and particles of environmental concern. Chem Rev 113:995–1015CrossRefGoogle Scholar
  18. 18.
    Yoshida Z, Johnson SG, Kimura T, Krsul JR (2010) Neptunium. In: Morss LR, Edelstein NM, Fuger J (eds) The chemistry of the actinide and transactinide elements, vol 2, 4th edn. Springer, Dordrecht, pp 699–812CrossRefGoogle Scholar
  19. 19.
    Choppin GR, Jensen MP (2010) Actinides in solution: complexation and kinetics. In: Morss LR, Edelstein NM, Fuger J (eds) The chemistry of the actinide and transactinide elements, vol 4, 4th edn. Springer, Dordrecht, pp 2524–2621CrossRefGoogle Scholar
  20. 20.
    Runde W, Neu MP (2010) Actinides in the geosphere. In: Morss LR, Edelstein NM, Fuger J (eds) The chemistry of the actinide and transactinide elements, vol 6, 4th edn. Springer, Dordrecht, pp 3475–3593CrossRefGoogle Scholar
  21. 21.
    Kar AS, Kumar S, Tomar BS (2012) U(VI) sorption by silica: effect of complexing anions. Colloid Surf A 395:240–247CrossRefGoogle Scholar
  22. 22.
    Zhu WB, Liu ZJ, Chen L, Dong YH (2012) Sorption of uranium(VI) on Na-attapulgite as a function of contact time, solid content, pH, ionic strength, temperature and humic acid. J Radioanal Nucl Chem 289:781–788CrossRefGoogle Scholar
  23. 23.
    Tertre E, Pret D, Ferrage E (2011) Influence on the ionic strength and solid/solution ratio on Ca(II)-for-Na+ exchange on montmorillonite. Part 1: chemical measurements, thermodynamic modeling and potential implications for trace elements geochemistry. J Colloid Interface Sci 353:248–256CrossRefGoogle Scholar
  24. 24.
    Amayri S, Jermolajev A, Reich T (2011) Neptunium(V) sorption on kaolinite. Radiochim Acta 99:349–357CrossRefGoogle Scholar
  25. 25.
    Schmeide K, Bernhard G (2010) Sorption of Np(V) and Np(VI) onto kaolinite: effects of pH, ionic strength, carbonate and humic acid. Appl Geochem 25:1238–1247CrossRefGoogle Scholar
  26. 26.
    Schlegel ML, Descostes M (2009) Uranium uptake by hectorite and montmorillonite: a solution chemistry and polarized EXAFS study. Environ Sci Technol 43:8593–8598CrossRefGoogle Scholar
  27. 27.
    Schnurr A, Marsac R, Rabung Th, Lutzenkirchen J, Geckeis H (2015) Sorption of Cm(III) and Eu(III) onto clay minerals under saline conditions: batch adsorption, laser-fluorescence spectroscopy and modeling. Geochim et Cosmochim Acta 151:192–202CrossRefGoogle Scholar
  28. 28.
    Vilks P, Miller NH (2013) Sorption studies with sedimentary rock under saline conditions. Nuclear Waste Management Organization technical report, NWMO TR-2013-23, Toronto, CanadaGoogle Scholar
  29. 29.
    U. S. Environmental Protection Agency (1998) Assessment of K ds used in the CCA, Technical support document for Section 194.14: DOCKET NO: A-93-02 V-B-4, Washington DC, USAGoogle Scholar
  30. 30.
    Warnecke E, Hollmann A, Tittel G, Brennecke P (1994) Gorleben radionuclide migration experiments: more than 10 years of experience. Radiochim Acta 66(67):821–827Google Scholar
  31. 31.
    Lieser KH, Muhlenweg U (1988) Neptunium in the hydrosphere and in the geosphere. Radiochim Acta 44(45):129–133Google Scholar
  32. 32.
    Laul JC, Smith MR, Hubbard N (1985) Behaviour of natural uranium, thorium, and radium isotopes in the Wolfcamp brine aquifers, Palo Doro Basin. Mater Res Soc Symp Proc 44(Scientific Basis for Nuclear Waste Management VIII):475–482Google Scholar
  33. 33.
    Mucciardi AN, Johnson TC, Saunier J (1979) Statistical investigation of the mechanics controlling radionuclide sorption. Annual report, Battelle-Pacific Northwest Laboratories, ADI Ref. 548, Richland, USAGoogle Scholar
  34. 34.
    Hower J, Mowatt TC (1966) The mineralogy of illites and mixed layer illite-montmorillonite. Am Miner 51:825–854Google Scholar
  35. 35.
    Kirishima A, Tochiyama O, Tanaka K, Niibori Y, Mitsugashira T (2003) Redox speciation method for neptunium in a wide range of concentrations. Radiochim Acta 91:191–196CrossRefGoogle Scholar
  36. 36.
    Kirishima A (2014) Private communicationGoogle Scholar
  37. 37.
    Fanghänel Th, Neck V, Kim JI (1996) The ion product of H2O, dissociation constants of H2CO3 and Pitzer parameters in the system Na+/H+/OH/HCO3 /CO3 2−/ClO4 /H2O at 25 °C. J Sol Chem 25:327–343CrossRefGoogle Scholar
  38. 38.
    Altmaier M, Metz V, Neck V, Müller R, Fanghänel Th (2003) Solid-liquid equilibria of Mg(OH)2(cr) and Mg2(OH)3Cl·4H2O(cr) in the system Mg–Na–H–OH–Cl–H2O at 25 & #xB0;C. Geochim et Cosmochim Acta 67:3595–3601CrossRefGoogle Scholar
  39. 39.
    Altmaier M, Neck V, Fanghänel Th (2008) Solubility of Zr(IV), Th(IV) and Pu(IV) hydrous oxides in CaCl2 solutions and the formation of ternary Ca–M(IV)–OH complexes. Radiochim Acta 96:541–550CrossRefGoogle Scholar
  40. 40.
    Nagasaki S, Tanaka S, Todoriki M, Suzuki A (1998) Surface sorption and surface diffusion of NpO2 + with poorly crystallized ferric oxide. J Alloy Compd 271–273:252–256CrossRefGoogle Scholar
  41. 41.
    Snow MS, Zhao P, Dai Z, Kersting AB, Zavarin M (2013) Neptunium(V) sorption to goethite at attomolar to micromolar concentrations. J Colloid Interface Sci 390:176–182CrossRefGoogle Scholar
  42. 42.
    Nagasaki S, Tanaka S (1998) Sorption equilibrium and kinetics of NpO2 + uptake onto illite. Radiochim Acta 82:263–267CrossRefGoogle Scholar
  43. 43.
    Nagasaki S, Tanaka S (2000) Sorption equilibrium and kinetics of NpO2 + on dispersed particles of Na-montmorillonite. Radiochim Acta 88:705–709CrossRefGoogle Scholar
  44. 44.
    Tachi Y, Shibutani T, Sato H, Shibata M (1999) Sorption and diffusion behavior of palladium in bentonite, granodiorite and tuff. The Japan Nuclear Cycle Development Institute technical note, JNC TN 8400, Tokyo, JapanGoogle Scholar
  45. 45.
    Wang XK, Rabung Th, Geckeis H, Panak PJ, Klenze R, Fanghäenel Th (2004) Effect of humic acid on the sorption of Cm(III) onto γ-Al2O3 studied by the time resolved laser fluorescence spectroscopy. Radiochim Acta 92:691–695CrossRefGoogle Scholar
  46. 46.
    Li Y, Wang C, Guo Z, Liu C, Wu W (2014) Sorption of thorium(IV) from aqueous solutions by graphene oxide. J Radioanal Nucl Chem 299:1683–1691CrossRefGoogle Scholar
  47. 47.
    Wu W, Fan Q, Xu J, Niu Z, Lu S (2007) Adsorption of Th(IV) on attapulgite: effects of pH, ionic strength, and temperature. Appl Radiat Isot 65:1108–1114CrossRefGoogle Scholar
  48. 48.
    Gorgeon L (1994) Contribution à la modélisation physico-chimique de la rétention de radioéléments à vie longue par des matériaux argileux, Ph.D. Dessertation, Université Paris 6Google Scholar
  49. 49.
    Torstenfelt B, Rundberg RS, Mitchell AJ (1988) Actinide sorption on granites and minerals as a function of pH and colloids/psuedocolloids. Radiochim Acta 44(45):111–117Google Scholar
  50. 50.
    Bradbury MH, Baeyens B (2005) Modelling the sorption of Mn(II), Co(II), Ni(II), Zn(II), Cd(II), Eu(III), Am(III), Sn(IV), Th(IV), Np(V) and U(VI) on montrmorillonite: linear free energy relationships and estimates of surface binding constants for some selected heavy metals and actinides. Geochim et Cosmochim Acta 69:875–892CrossRefGoogle Scholar
  51. 51.
    Bradbury MH, Baeyens B (2009) Sorption modeling on illite. Part II: actinide sorption and linear free energy relationships. Geochim et Cosmochim Acta 73:1004–1013CrossRefGoogle Scholar
  52. 52.
    Kitamura A, Tomura T (2003) Sorption behaviour of neptunium onto smectite under reducing conditions in carbonate media. Japan Nuclear Cycle Development Institute technical note, JNC TN8400 2003-25 (in Japanese)Google Scholar
  53. 53.
    Stammose D, Ly J, Pitsch H, Dolo JM (1992) Sorption mechanisms of three actinides on a clayey mineral. Appl Clay Sci 7:225–238CrossRefGoogle Scholar
  54. 54.
    Kitamura A, Doi R, Yoshida Y (2014) Update of JAEA-TDB: update of thermodynamic data for palladium and tin, refinement of thermodynamic data for protactinium, and preparation of PHREEQC database for use of the Brønsted-Guggenheim-Scatchard model. Japan Atomic Energy Agency, JAEA-Data/Code 2014-009, Tokai, JapanGoogle Scholar
  55. 55.
    Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (Version 2)—a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations, U.S. Geological Survey, Water Resources Investigations Report 99-4259Google Scholar
  56. 56.
    Turner DR, Pablan RT, Bertetti FP (1998) Neptunium(V) sorption on montrmorillonite: an experimental and surface complexation modeling study. Clays Clay Miner 46:256–269CrossRefGoogle Scholar
  57. 57.
    Sakamoto Y, Konishi M, Shirahashi K, Senoo M, Moriyama N (1990) Adsorption behavior of neptunium for soil. Radiact Waste Manage Nucl Fuel Cycle 15:13–25Google Scholar
  58. 58.
    Higgo JJW, Rees LVC, Cronan DS (1983) Sorption of americium and neptunium by deep-sea sediments. Radiact Waste Manag Nucl Fuel Cycle 4:73–102Google Scholar
  59. 59.
    Morgan RD, Pryke DC, Rees JH (1988) Data for the sorption of actinides on candidate materials for use in repository. UK Department of Environment Report, DOE/RW/87.094Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • Shinya Nagasaki
    • 1
  • Takumi Saito
    • 2
  • Tammy Tianxiao Yang
    • 3
  1. 1.McMaster UniversityHamiltonCanada
  2. 2.Japan Atomic Energy AgencyTokaiJapan
  3. 3.Nuclear Waste Management OrganizationTorontoCanada

Personalised recommendations