Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 306, Issue 3, pp 707–711 | Cite as

Extraction chromatographic behavior of actinium and REE on DGA, Ln and TRU resins in nitric acid solutions

  • V. Ostapenko
  • A. Vasiliev
  • E. Lapshina
  • S. Ermolaev
  • R. Aliev
  • Yu. Totskiy
  • B. Zhuikov
  • S. Kalmykov
Article

Abstract

The extraction-chromatographic behavior of actinium, rare earth elements and other radionuclides formed upon the irradiation of thorium by medium energy protons was studied. The k′ values for Ac(III), Ce(III) and La(III) in nitric acid solutions using Ln Resin, DGA Resin and TRU Resin (Triskem Int.) were determined. The optimal conditions for separation of Ac(III) and rare earth elements (REE(III)) were defined. The obtained results can be used to develop the multipurpose analytical procedure for actinium separation either for the needs of nuclear medicine or for radiochemical analysis of environmental samples.

Keywords

225Ac/213Bi REE Extraction chromatography Radionuclide separation Proton irradiation of thorium 

Notes

Acknowledgments

The authors are grateful to Olga Mokhodoeva from the Institute Of Geochemistry and Analytical Chemistry of RAS and Valeriy Chudakov from INR RAS for the help in experiments. The authors are also grateful to Steffen Happel (Triskem Int.) for supplying the samples of extraction chromatographic resins. This work was partly supported by Russian Basic Research Foundation for financial support (Grant 13-03-01304).

References

  1. 1.
    Miao Y, Hylarides M, Fisher DR, Shelton T, Moore H, Wester DW, Fritzberg AR, Winkelmann CT, Hoffman T, Quinn TP (2005) Melanoma therapy via peptide-targeted alpha-radiation. Clin Cancer Res 11:5616–5626CrossRefGoogle Scholar
  2. 2.
    Li Y, Tian Z, Rizvi SM, Bander NH, Allen BJ (2002) In vitro and preclinical targeted alpha therapy of human prostate cancer with Bi-213 labeled J591 antibody against the prostate specific membrane antigen. Prostate Cancer Prostatic Dis 5:36–46CrossRefGoogle Scholar
  3. 3.
    Fullerton N, Boyd M, Mairs RJ, Keith WN, Alderwish O, Brown MM, Livingstone A, Kirk D (2004) Combining a targeted radiotherapy and gene therapy approach for adenocarcinoma of prostate. Prostate Cancer Prostatic Dis. 7:355CrossRefGoogle Scholar
  4. 4.
    Arazi L, Cooks T, Schmidt M, Keisari Y, Kelson I (2007) Treatment of solid tumors by interstitial release of recoiling short-lived alpha-emitter. Phys Med Biol 52:5025–5042CrossRefGoogle Scholar
  5. 5.
    Kozempel J, Vlk M, Málková E, Bajzíková A, Bárta J, Santos-Oliveira R, Malta Rossi A (2015) Prospective carriers of 223Ra for targeted alpha therapy. J Radioanal Nucl Chem 304:443–447CrossRefGoogle Scholar
  6. 6.
    Allen B, Raja C, Rizvi S, Li Y, Tsui W, Zhang D, Song E, Qu CF, Kearsley J, Graham P, Thompson J (2004) Targeted alpha therapy for cancer. Phys Med Biol 49:3703–3712CrossRefGoogle Scholar
  7. 7.
    Kennel SJ, Boll R, Stabin M, Schuller HM, Mirzadeh S (1999) Radioimmunotherapy of micrometastases in lung with vascular targeted 213Bi. Br J Cancer 80(1/2):175–184CrossRefGoogle Scholar
  8. 8.
    Sandmaier B, Bethge WA, Wilbur DS, Hamlin DK, Santos EB, Brechbiel MW, Fisher DR, Storb R (2002) Bismuth-213-labeled anti-CD45 radioimmunoconjugate to condition dogs for nonmyeloablative allogeneic marrow grafts. Blood 100:318–326CrossRefGoogle Scholar
  9. 9.
    Morgenstern A, Bruchertseifer F (2011) Targeted alpha therapy with 213Bi. Current Radiopharm 4:295–305CrossRefGoogle Scholar
  10. 10.
    Tsoupko-Sitnikov V, Norseev Yu (1996) Generator of actinium-225. J Radioanal Nucl Chem 205:75–83CrossRefGoogle Scholar
  11. 11.
    Maslov O, Sabel’nikov A, Dmitriev S (2006) Preparation of 225Ac by 226Ra (γ, n) photonuclear reaction on an electron accelerator, MT-25 microtron. Radiochemistry 48:195–197CrossRefGoogle Scholar
  12. 12.
    Apostolidis C, Molinet R, Rasmussen G, Morgenstern A (2005) Production of Ac-225 from Th-229 for targeted α-therapy. Anal Chem 77:6288–6291CrossRefGoogle Scholar
  13. 13.
    Zhuikov BL, Kalmykov SN, Ermolaev SV, Aliev RA, Kokhanyuk VM, Matushko VL, Tananaev IG, Myasoedov BF (2011) Production of 225Ac and 223Ra from thorium irradiated with protons. Radiochemistry 53:66–72CrossRefGoogle Scholar
  14. 14.
    Horwitz P, Bloomquist C (1975) Chemical separation for super-heavy element searches in irradiated uranium targets. J Inorg Nucl Chem 37:425–434CrossRefGoogle Scholar
  15. 15.
    Horwitz EP, Chiarizia R, Dietz ML, Diamond H, Nelson DM (1993) Separation and preconcentration of actinides from acidic media by extraction chromatography. Anal Chim Acta 281:361–371CrossRefGoogle Scholar
  16. 16.
    Burnett W, Cable P, Moser R (1995) Determination of radium-228 in natural waters using extraction chromatographic resins. Radioact Radiochem 6:33–44Google Scholar
  17. 17.
    Horwitz P, Bond A, Barans R, McAlister D (2003) 27th Actinide separations Conferences. Chicago, p. 47Google Scholar
  18. 18.
    Aliev RA, Ermolaev SV, Vasiliev AN, Ostapenko VS, Lapshina EV, Zhuikov BL, Zakharov NV, Pozdeev VV, Kokhanyuk VM, Myasoedov BF, Kalmykov SN (2014) Isolation of medicine-applicable actinium-225 from thorium targets irradiated by medium-energy protons. Solv Extr Ion Exch 32:468–477CrossRefGoogle Scholar
  19. 19.
    Horwitz P, Chiarizia R (1992) A novel strontium selective extraction chromatographic resin. Solv Extr Ion Exch 10:313–336CrossRefGoogle Scholar
  20. 20.
    Zielinska B, Apostolidis C, Bruchertseifer F, Morgenstern A (2007) An improved method for the production of Ac-225/Bi-213 from Th-229 for targeted alpha therapy. Solv Extr Ion Exch 25:339–349CrossRefGoogle Scholar
  21. 21.
    Horwitz P, Dietz M, Chiarizia R, Diamond H, Maxwell SL III, Nelson MR (1995) Separation and preconcentration of actinides by extraction chromatography using a supported liquid anion exchanger: application to the characterization of high-level nuclear waste solutions. Anal Chim Acta 310:63–78CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • V. Ostapenko
    • 1
    • 2
  • A. Vasiliev
    • 1
    • 2
  • E. Lapshina
    • 2
  • S. Ermolaev
    • 2
  • R. Aliev
    • 1
    • 3
  • Yu. Totskiy
    • 1
  • B. Zhuikov
    • 2
  • S. Kalmykov
    • 1
    • 3
  1. 1.Lomonosov Moscow State UniversityMoscowRussia
  2. 2.Institute for Nuclear Research of Russian Academy of SciencesMoscowRussia
  3. 3.National Research Center “Kurchatov Intsitite” (NRC “Kurchatov Institute”)MoscowRussia

Personalised recommendations