Advertisement

Electrochemical preparation and spectroelectrochemical study of neptunium chloride complexes in LiCl–KCl eutectic melts

  • Dae-Hyeon Kim
  • Tae-Hong ParkEmail author
  • Sang-Eun Bae
  • Nari Lee
  • Jong-Yun Kim
  • Young-Hwan Cho
  • Jei-Won Yeon
  • Kyuseok Song
Article

Abstract

We prepared neptunium chloride complexes electrochemically and performed spectroelectrochemical measurements of neptunium ions in LiCl–KCl eutectic melts at 450 °C, where the neptunium concentrations studied were in the range of 0.1–1 mM. We observed a highly absorbing fd transition band of Np3+ at 383 nm, which was used to determine an formal potential of the Np4+|Np3+ redox couple (E° = 0.45 V vs. Ag|Ag+) with a solution of concentration as low as ~0.1 mM. This result agreed well with the value (E° = 0.42 V vs. Ag|Ag+) determined by cyclic voltammetry with a ~15 mM solution.

Keywords

Neptunium Molten salt Transuranium Pyroprocess Spectroelectrochemical technique 

Notes

Acknowledgments

This work was supported by a National Research Foundation of Korea (NRF) Grant, funded by the Korean government (MSIP) (No. 2012M2A8A5025923).

References

  1. 1.
    Nawada HP, Fukuda K (2005) Role of pyro-chemical processes in advanced fuel cycles. J Phys Chem Solids 66:647–651CrossRefGoogle Scholar
  2. 2.
    Yoo JH, Seo CS, Kim EH, Lee HS (2008) A conceptual study of pyroprocessing for recovering actinides from spent oxide fuels. Nucl Eng Technol 40:581–592CrossRefGoogle Scholar
  3. 3.
    Hannum WH, Wade DC, McFarlane HF, Hill RN (1997) Nonproliferation and safeguards aspects of the IFR. Prog Nucl Energy 31:203–217CrossRefGoogle Scholar
  4. 4.
    Zhang J (2014) Electrochemistry of actinides and fission products in molten salts—data review. J Nucl Mater 447:271–284CrossRefGoogle Scholar
  5. 5.
    Masset P, Bottomley D, Konings R et al (2005) Electrochemistry of uranium in molten LiCl–KCl eutectic. J Electrochem Soc 152:A1109–A1115CrossRefGoogle Scholar
  6. 6.
    Kuznetsov SA, Hayashi H, Minato K, Gaune-Escard M (2005) Electrochemical behavior and some thermodynamic properties of UCl4 and UCl3 dissolved in a LiCl–KCl eutectic melt. J Electrochem Soc 152:C203–C212CrossRefGoogle Scholar
  7. 7.
    Nagai T, Uehara A, Fujii T, Shirai O, Sato N, Yamana H (2005) Redox equilibrium of U4+/U3+ in molten NaCl–2CsCl by UV-Vis spectrophotometry and cyclic voltammetry. J Nucl Sci Technol 42:1025–1031CrossRefGoogle Scholar
  8. 8.
    Bae S-E, Cho Y-H, Park YJ, Ahn HJ, Song K (2010) Oxidation state shift of uranium during U(III) synthesis with Cd(II) and Bi(III) in LiCl–KCl melt. Electrochem Solid-State Lett 13:F25–F27CrossRefGoogle Scholar
  9. 9.
    Kim DH, Bae SE, Park TH et al (2014) Electrochemical reactions of uranium trichloride on a graphene surface in LiCl–KCl molten salt. Electrochemistry 82:462–466CrossRefGoogle Scholar
  10. 10.
    Lysy R, Landresse G, Duyckaerts G (1974) Étude quantitative d’équilibres chimiques en solution dans les sels fondus par spectrophotométrie d’absorption. Application au neptunium. Anal Chim Acta 72:307–314CrossRefGoogle Scholar
  11. 11.
    Lysy R, Duyckaerts G (1978) Diagramme potentiel-pO2− du neptunium dans l’eutectique LiCl-KCl a 660°C. Anal Chim Acta 96:125–132CrossRefGoogle Scholar
  12. 12.
    Masset P, Apostolidis C, Konings RJM et al (2007) Electrochemical behaviour of neptunium in the molten LiCl–KCl eutectic. J Electroanal Chem 603:166–174CrossRefGoogle Scholar
  13. 13.
    De Córdoba G, Laplace A, Lacquement J, Caravaca C (2007) Electrochemical behavior of Np in the molten LiCl–KCl eutectic. J Electrochem Soc 154:F16–F24CrossRefGoogle Scholar
  14. 14.
    Polovov IB, Sharrad CA, May I, Vasin BD, Volkovich VA, Griffiths TR (2007) Spectroelectrochemical studies of uranium and neptunium in LiCl–KCl eutectic melt. ECS Trans 3:503–511CrossRefGoogle Scholar
  15. 15.
    Uehara A, Nagai T, Fujii T, Shirai O, Yamana H (2013) Spectrophotometric and electrochemical study of neptunium ions in molten NaCl–CsCl eutectic. J Nucl Mater 437:166–170CrossRefGoogle Scholar
  16. 16.
    Fujii T, Uda T, Fukasawa K et al (2013) Quantitative analysis of trivalent uranium and lanthanides in a molten chloride by absorption spectrophotometry. J Radioanal Nucl Chem 296:255–259CrossRefGoogle Scholar
  17. 17.
    Herrmann SD, Li SX (2010) Separation and recovery of uranium metal from spent light water reactor fuel via electrolytic reduction and electrorefining. Nucl Technol 171:247–265Google Scholar
  18. 18.
    Huntley MW (2001) Sequential separation of americium, curium, plutonium, neptunium and uranium in various matrices from the electrometallurgic treatment of spent-nuclear fuel. Radiochim Acta 89:605–612CrossRefGoogle Scholar
  19. 19.
    Joe K, Han S-H, Song B-C, Lee C-H, Ha Y-K, Song K (2013) Inductively coupled plasma mass spectrometry for the determination of 237Np in spent nuclear fuel samples by isotope dilution method using 239Np as a spike. Nucl Eng Technol 45:415–420CrossRefGoogle Scholar
  20. 20.
    Park YJ, Bae S-E, Cho Y-H, Kim J-Y, Song K (2011) UV-Vis absorption spectroscopic study for on-line monitoring of uranium concentration in LiCl–KCl eutectic salt. Microchem J 99:170–173CrossRefGoogle Scholar
  21. 21.
    Thakur P, Mulholland GP (2012) Determination of 237Np in environmental and nuclear samples: a review of the analytical method. Appl Radiat Isot 70:1747–1778CrossRefGoogle Scholar
  22. 22.
    Shirai O, Nagai T, Uehara A, Yamana H (2008) Electrochemical properties of the Ag+|Ag and other reference electrodes in the LiCl–KCl eutectic melts. J Alloys Compd 456:498–502CrossRefGoogle Scholar
  23. 23.
    Martinot L, Duyckaerts G (1969) Electrochemical behaviour of NpO2(VI) and NpO2(V) in molten LiCl–KCl. Inorg Nucl Chem Lett 5:909–919CrossRefGoogle Scholar
  24. 24.
    Hayashi H, Takano M, Kurata M, Minato K (2013) Syntheses of neptunium trichloride and measurements of its melting temperature. J Nucl Mater 440:477–479CrossRefGoogle Scholar
  25. 25.
    Kim BY, Yun J-I (2013) Reduction of trivalent europium in molten LiCl–KCl eutectic observed by in situ laser spectroscopic techniques. ECS Electrochem Lett 2:H54–H57CrossRefGoogle Scholar
  26. 26.
    Kim T-J, Uehara A, Nagai T, Fujii T, Yamana H (2011) Quantitative analysis of Eu2+ and Eu3+ in LiCl–KCl eutectic melt by spectrophotometry and electrochemistry. J Nucl Mater 409:188–193CrossRefGoogle Scholar
  27. 27.
    Shiloh M, Marcus Y (1966) A spectrophotometric study of trivalent actinide complexes in solution-II. Neptunium and plutonium. J Inorg Nucl Chem 28:2725–2732CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • Dae-Hyeon Kim
    • 1
    • 2
  • Tae-Hong Park
    • 1
    Email author
  • Sang-Eun Bae
    • 1
    • 3
  • Nari Lee
    • 1
    • 4
  • Jong-Yun Kim
    • 1
    • 3
  • Young-Hwan Cho
    • 1
  • Jei-Won Yeon
    • 1
    • 3
  • Kyuseok Song
    • 1
  1. 1.Nuclear Chemistry Research DivisionKorea Atomic Energy Research InstituteDaejeonRepublic of Korea
  2. 2.Department of ChemistryKorea UniversitySeoulRepublic of Korea
  3. 3.University of Science and Technology DaejeonRepublic of Korea
  4. 4.Department of ChemistryChungbuk National UnviersityCheongjuRepublic of Korea

Personalised recommendations