Journal of Radioanalytical and Nuclear Chemistry

, Volume 307, Issue 1, pp 681–689 | Cite as

Rhenium(VII) and technetium(VII) separation from aqueous solutions using a polyethylenimine–epichlorohydrin resin

  • S. Sarri
  • P. MisaelidesEmail author
  • D. Zamboulis
  • X. Gaona
  • M. Altmaier
  • H. Geckeis


The ReO4 and 99TcO4 removal from aqueous solutions using a polyethylenimine–epichlorohydrin resin was investigated in absence and presence of background electrolyte (0.01 and 0.50 M NaCl). Re(VII) and Tc(VII) sorption isotherms were obtained for solutions with 2.3 ≤ pH ≤ 8.9 and concentration 0.21–26.9 mmol Re/L and 5 × 10−3 – 5 × 10−2 mmol 99Tc/L. The highest uptake for both elements (R d ≈ 104 mL/g) was observed for solutions with pH ≤ 4 and CNaCl ≤ 0.01 M, hinting towards the existence of protonated groups contributing to the sorption of anions under acidic conditions and to the competition of Cl. The sorption data were modeled using the Langmuir and Freundlich equations.


Sorption Polyethylenimine–epichlorohydrin resin Pertechnetate anions Perrhenate anions Sorption isotherms 



The Tc studies were performed during the research stay of the corresponding author (P.M.) at the Institute for Nuclear Waste Disposal of the Karlsruhe Institute of Technology (INE–KIT) from March till August 2013. The funding by KIT as well as the support and the hospitality from the side of the Director as well as the scientific and technical staff of the INE during this stage is gratefully acknowledged. The authors of this work would also like to thank Dr. D. Schild (INE–KIT), Assoc. Prof. E. Pavlidou (Department of Physics, AUTh) and Mrs. M. Böttle (INE–KIT) for their valuable assistance with the XPS, SEM/EDS and Tc-measurements.


  1. 1.
    Brookins DG (1986) Appl Geochem 1:513–517CrossRefGoogle Scholar
  2. 2.
    Icenhower JP, Martin WJ, Qafoku NP, Zachara JM (2008) The geochemistry of technetium: a summary of the behavior of an artificial element in the natural environment, Pacific Northwest National Laboratory, Report PNNL 18139Google Scholar
  3. 3.
    Söderlund M, Lusa M, Lehto J, Hakanen M, Vaaramaa K, Lahdenperä A-M (2011) Sorption of Iodine, Chlorine, Technetium and Cesium in Soil, POSIVA Report 2011-04, EURAJOKIGoogle Scholar
  4. 4.
    Guillaumont R, Fanghänel T, Neck V, Fuger J, Palmer DA, Grenthe I, Rand MH (2003) Update on the chemical thermodynamics of uranium, neptunium, plutonium, americium and technetium. OECD Nuclear Energy Agency, vol. 5. Elsevier, AmsterdamGoogle Scholar
  5. 5.
    Kobayashi T, Scheinost AC, Fellhauer D, Gaona X, Altmaier M (2013) Radiochim Acta 101:323–332CrossRefGoogle Scholar
  6. 6.
    Yalcintas E, Gaona X, Scheinost AC, Kobayashi T, Altmaier M, Geckeis H (2015) Radiochim Acta 103:57–72CrossRefGoogle Scholar
  7. 7.
    Cui DQ, Eriksen TE (1996) Environ Sci Technol 30:2259–2262CrossRefGoogle Scholar
  8. 8.
    Cui DQ, Eriksen TE (1996) Environ Sci Technol 30:2263–2269CrossRefGoogle Scholar
  9. 9.
    El-Wear S, German KE, Peretrukhin VF (1992) J Radioanal Nucl Chem 157:3–14CrossRefGoogle Scholar
  10. 10.
    Shen D, Fan XH, Su XG, Zeng JS, Dong Y (2002) J Radioanal Nucl Chem 254:137–142CrossRefGoogle Scholar
  11. 11.
    Keith-Roach MJ, Morris K, Dahlgaard H (2003) Mar Chem 81:149–162CrossRefGoogle Scholar
  12. 12.
    Vinšová H, Konirova R, Koudelkova M, Jedináková-Křižová V (2004) J Radioanal Nucl Chem 261:407–413CrossRefGoogle Scholar
  13. 13.
    Behnsen J, Riebe B (2008) Appl Geochem 23:2746–2752CrossRefGoogle Scholar
  14. 14.
    Vinšová H, Jedináková-Křižová V, Ožanova M (2009) J Radioanal Nucl Chem 281:75–78CrossRefGoogle Scholar
  15. 15.
    Hudson MJ, Tyler DJ (1990) Hydrometallurgy 24:111–125CrossRefGoogle Scholar
  16. 16.
    Kasar S, Kumar S, Kar A, Bajpai RK, Kaushik CP, Tomar BS (2014) J Radioanal Nucl Chem 300:71–75CrossRefGoogle Scholar
  17. 17.
    Gu B, Dowlen KE, Liang L, Clausen JL (1996) Sep Technol 6:123–132CrossRefGoogle Scholar
  18. 18.
    Kholmogorov AG, Kononova ON, Kachin SV, Ilyichev SN, Kryuchkov VV, Kalyakina OP, Pashkov GL (1999) Hydrometallurgy 51:19–35CrossRefGoogle Scholar
  19. 19.
    Kim E, Benedetti MF, Boulègue J (2004) Water Res 38:448–454CrossRefGoogle Scholar
  20. 20.
    Lan X, Liang S, Song Y (2006) Hydrometallurgy 82:133–136CrossRefGoogle Scholar
  21. 21.
    Jermakowicz-Bartkowiak D, Kolarz BN (2011) React Funct Polym 71:95–103CrossRefGoogle Scholar
  22. 22.
    Shu Z, Yang M (2010) Chin J Chem Eng 18:372–376CrossRefGoogle Scholar
  23. 23.
    Xiong C, Yao C, Wu X (2008) Hydrometallurgy 90:221–226CrossRefGoogle Scholar
  24. 24.
    Ashley KR, Cobb SL, Redzinski SD, Schroeder NC (1996) Solv Extr Ion Exch 14:263–284CrossRefGoogle Scholar
  25. 25.
    Kim E, Benedetti MF, Boulègue J (2004) Water Res 38:448–454CrossRefGoogle Scholar
  26. 26.
    Ashley KR, Ball JR, Abney KD, Turner R, Schroeder NC (1995) J Radioanal Nucl Chem 194:71–79CrossRefGoogle Scholar
  27. 27.
    Popova NN, Bykov GL, Petukhova GA, Tananaev IG, Ershov BG (2013) J Radioanal Nucl Chem 298:1463–1468CrossRefGoogle Scholar
  28. 28.
    Ashley KR, Ball JR, Pinkerton AB, Abney KD, Schroeder NC (1994) Solv Extr Ion Exch 12:239–259CrossRefGoogle Scholar
  29. 29.
    Liang L, Gu B, Yin X (1996) Separ Technol 6:111–122CrossRefGoogle Scholar
  30. 30.
    Mashkani SG, Ghazvini PTM, Aligol DA (2009) Bioresour Technol 100:603–608CrossRefGoogle Scholar
  31. 31.
    Chopabaeva NN, Ergozhin EE, Tasmagambet AT, Nikitina AI (2009) Solid Fuel Chem 43:99–102CrossRefGoogle Scholar
  32. 32.
    Lou Z, Zhao Z, Li Y, Shan W, Xiong Y, Fang D, Yue S, Zang S (2013) Bioresour Technol 133:546–554CrossRefGoogle Scholar
  33. 33.
    Wang L, Liu W, Wang T, Ni J (2013) Chem Eng J 225:153–163CrossRefGoogle Scholar
  34. 34.
    Zhao YG, Shen HY, Pan SD, Hu MQ (2010) J Hazard Mater 182:295–302CrossRefGoogle Scholar
  35. 35.
    Ebner AD, Ritter JA, Pioehn HJ, Kochen RL, Navratil JD (1999) Sep Sci Technol 34:1277–1300Google Scholar
  36. 36.
    Apelback A (1992) J Chem Thermodyn 4:619–626Google Scholar
  37. 37.
    Altmaier M, Metz V, Neck V, Müller R, Fanghänel T (2003) Geochim Cosmochim Acta 67:3595–3601CrossRefGoogle Scholar
  38. 38.
    Borisova LV, Ermakov AN, Ismagulova AB (1982) Analyst 107:495–499CrossRefGoogle Scholar
  39. 39.
    Limousin G, Gaudet JP, Charlet L, Szenknect S, Barthes V, Krimissa M (2007) Appl Geochem 22:249–275CrossRefGoogle Scholar
  40. 40.
    Gu B, Liang L, Brown GM, Bonnesen PV, Moyer BA, Alexandratos SD, Ober R (1998) A field trial of novel bifunctional resins for removing pertechnetate (TcO4 ) from contaminated groundwater, Oak Ridge National Laboratory, Report ORNL/TM-13593. Accessed 15 Feb 2015
  41. 41.
    Lieser KH, Bauscher CH (1987) Radiochim Acta 42:205–213Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • S. Sarri
    • 1
  • P. Misaelides
    • 1
    Email author
  • D. Zamboulis
    • 1
  • X. Gaona
    • 2
  • M. Altmaier
    • 2
  • H. Geckeis
    • 2
  1. 1.Department of ChemistryAristotle UniversityThessalonikiGreece
  2. 2.Institute for Nuclear Waste DisposalKarlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations