Journal of Radioanalytical and Nuclear Chemistry

, Volume 307, Issue 1, pp 645–651 | Cite as

Rapid quantification of alpha emitters in low- and intermediate-level dry radioactive waste

  • Tae-Hong ParkEmail author
  • Eul-Hye Jeon
  • Yong Sul Choi
  • Jong-Ho Park
  • Hong Joo Ahn
  • Yong Jun Park


We developed a rapid quantification method of Pu, Am, and Cm in low- and intermediate-level radioactive waste using TRU resin, alpha spectrometry, and thermal ionization mass spectrometry for radioactive waste disposal. In particular, we focused on the optimization of sample preparation methods for alpha spectrometry and mass spectrometry to reduce the analysis time. The optimized method used Am and Pu stripping solutions for micro-coprecipitation and showed good recovery and alpha spectrum resolution for alpha counting. In addition, appropriate selection of Pu elution solution decreased the sample preparation time for thermal ionization mass spectrometry measurements.


Plutonium Americium Curium Extraction chromatography Separation Rapid analysis 



This work was supported by the Nuclear Research and Development Program through National Research Foundation of Korea (No. 2012M2A8A5025923) funded by the Ministry of Science, ICT and Future Planning.


  1. 1.
    Choi K-S, Lee CH, Im H-J, Ahn H-J, Song K (2014) Sample pretreatment for the determination of gamma emitting nuclides in dry radioactive waste using a dry ashing and high-performance microwave digestion system. J Radioanal Nucl Chem 301:567–571CrossRefGoogle Scholar
  2. 2.
    Lee MH, Jung EC, Kim WH, Jee KY (2007) Sequential separation of the actinides in environmental and radioactive waste samples. J Alloys Compd 444–445:544–549CrossRefGoogle Scholar
  3. 3.
    Lee MH, Jeon YS, Song K (2009) Determination of activity concentrations and activity ratios of plutonium, americium and curium isotopes in radioactive waste samples. J Radioanal Nucl Chem 280:457–465CrossRefGoogle Scholar
  4. 4.
    Lee CH, Choi KS, Song BC, Ha Y-K, Song K (2013) Rapid separation of nickel for 59Ni and 63Ni activity measurement in radioactive waste samples. J Radioanal Nucl Chem 298:1221–1226CrossRefGoogle Scholar
  5. 5.
    Lee CH, Lee MH, Han SH, Ha Y-K, Kyuseok S (2011) Systematic radiochemical separation for the determination of 99Tc, 90Sr, 94Nb, 55Fe and 59,63Ni in low and intermediate radioactive waste samples. J Radioanal Nucl Chem 288:319–325CrossRefGoogle Scholar
  6. 6.
    Shakhashiro A, Tarjan S, Ceccatelli A, Kis-Benedek G, Betti M (2012) IAEA-447: a new certified reference material for environmental radioactivity measurements. Appl Radiat Isot 70:1632–1643CrossRefGoogle Scholar
  7. 7.
    Kim C-S, Kim C-K, Martin P, Sansone U (2007) Determination of Pu isotope concentrations and isotope ratio by inductively coupled plasma mass spectrometry: a review of analytical methodology. J Anal Atom Spectrosc 22:827–841CrossRefGoogle Scholar
  8. 8.
    Vajda N, Kim C-K (2011) Determination of transuranium isotopes (Pu, Np, Am) by radiometric techniques: a review of analytical methodology. Anal Chem 83:4688–4719CrossRefGoogle Scholar
  9. 9.
    Horwitz EP, Dietz ML, Chiarizia R, Diamond H, Maxwell III SL, Nelson MR (1995) Separation and preconcentration of actinides by extraction chromatography using a supported liquid anion exchanger: application to the characterization of high-level nuclear waste solutions. Anal Chim Acta 310:63–78CrossRefGoogle Scholar
  10. 10.
    Warwick PE, Croudace IW, Oh J-S (2001) Radiochemical determination of 241Am and Pu(α) in environmental materials. Anal Chem 73:3410–3416CrossRefGoogle Scholar
  11. 11.
    Lee MH, Park T-H, Song BC, Park JH, Song K (2012) A study of simple α source preparation using a micro-coprecipitation method. Bull Korean Chem Soc 33:3745–3748Google Scholar
  12. 12.
    Lee MH, Park TH, Park JH, Song K, Lee MS (2013) Radiochemical separation of Pu, U, Am and Sr isotopes in environmental samples using extraction chromatographic resins. J Radioanal Nucl Chem 295:1419–1422CrossRefGoogle Scholar
  13. 13.
    Dulanská S, Remenec B, Mátel L’, Galanda D (2011) The selective separation of Pu isotopes using molecular recognition technology product AnaLig® Pu02 gel and extraction chromatography TRU® resin. J Radioanal Nucl Chem 287:841–845CrossRefGoogle Scholar
  14. 14.
    Dulanská S, Remenec B, Mátel L, Durkot E (2012) Rapid determination of 239,240Pu, 238Pu, 241Am and 90Sr in radioactive waste using combined SPE sorbents AnaLig® Pu02, AnaLig® Sr01 and TRU® resin. J Radioanal Nucl Chem 293:81–85CrossRefGoogle Scholar
  15. 15.
    Vajda N, Törvényi A, Kis-Benedek G, Kim CK, Bene B, Mácsik Z (2009) Rapid method for the determination of actinides in soil and sediment samples by alpha spectrometry. Radiochim Acta 97:395–401Google Scholar
  16. 16.
    Macsik Z, Groska J, Vajda N, Vogt S, Kis-Benedek G, Kim CS, Maddison A, Donohue D (2013) Improved radioanalytical method for the simultaneous determination of Th, U, Np, Pu and Am(Cm) on a single TRU column by alpha spectrometry and ICP-MS. Radiochim Acta 101:241–251CrossRefGoogle Scholar
  17. 17.
    Maxwell SL, Culligan BK, Hutchison JB (2014) Rapid determination of actinides in asphalt samples. J Radioanal Nucl Chem 299:1891–1901CrossRefGoogle Scholar
  18. 18.
    Horwitz EP, Chiarizia R, Dietz ML, Diamond H, Nelson DM (1993) Separation and preconcentration of actinides from acidic media by extraction chromatography. Anal Chim Acta 281:361–372CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • Tae-Hong Park
    • 1
    Email author
  • Eul-Hye Jeon
    • 1
  • Yong Sul Choi
    • 1
  • Jong-Ho Park
    • 1
  • Hong Joo Ahn
    • 1
  • Yong Jun Park
    • 1
  1. 1.Nuclear Chemistry Research DivisionKorea Atomic Energy Research InstituteDaejeonKorea

Personalised recommendations