Journal of Radioanalytical and Nuclear Chemistry

, Volume 305, Issue 3, pp 889–895 | Cite as

High-pressure solid hydrogen target for muon catalyzed fusion

  • T. Matsuzaki
  • K. Ishida
  • M. Iwasaki


We have developed a high-pressure solid hydrogen target for muon-catalyzed fusion to study temperature dependence of fusion cycling rates and muon loss probabilities in solid hydrogen at higher temperature than the melting point. The constructed target is a simple standalone-system consisting of a solid hydrogen target, a high-pressure generator, an isolation valve and a buffer tank. The solid hydrogen target and high-pressure generator are independently cooled down and temperature-controlled by closed-cycle helium-refrigerators. In the performance test, the solid D2 target was formed successfully at 33.6 K with applying D2 gas pressure at 79 MPa.


Muon catalyzed fusion Solid hydrogen High-pressure target Fusion cycling rate Muon loss probability Muon reactivation 



We would like sincerely to appreciate Dr. A. J. Caffrey and Dr. J. Zmeskal for valuable discussions and suggestions on technical issues of high-pressure solid hydrogen target. We would also like to thank Mr. T. Kawaguchi for discussions during the designing, manufacturing and performance test. The present work was supported in part by RIKEN Director’s fund (RIKEN’s strategic programs for R&D).


  1. 1.
    Ishida K, Nagamine K, Matsuzaki T, Nakamura SN, Kawamura K, Sakamoto S, Iwasaki M, Tanase M, Kato M, Kurosawa K, Watanabe I, Kudo K, Takeda N, Eaton GH (1999) Hyperfine Interact 118:203CrossRefGoogle Scholar
  2. 2.
    Ishida K, Nagamine K, Matsuzaki T, Nakamura SN, Kawamura K, Sakamoto S, Iwasaki M, Tanase M, Kato M, Kurosawa K, Watanabe I, Kudo K, Takeda N, Eaton GH (2001) Hyperfine Interact 138:225CrossRefGoogle Scholar
  3. 3.
    Ishida K, Nagamine K, Matsuzaki T, Kawamura K (2005) Nucl Phys B (Proc Suppl) 149:348CrossRefGoogle Scholar
  4. 4.
    Kawamura N, Nagamine K, Matsuzaki T, Ishida K, Nakamura SN, Matsuda Y, Tanase M, Kato M, Sugai H, Kudo K, Takeda N, Eaton GH (2003) Phys Rev Lett 90:043401-1–043401-4Google Scholar
  5. 5.
    Petitjean C (2001) Hyperfine Interact 138:191CrossRefGoogle Scholar
  6. 6.
    Zmeskal J, Ackerbauer P, Sherman RH, Durham WB, Heard HC, Neumann W, Bossy H (1990/91) Muon Catalyzed Fusion 5/6: 379Google Scholar
  7. 7.
    Jones Steven E (1987) Muon Catal Fusion 1:21Google Scholar
  8. 8.
    Caffrey AJ, Anderson AN, Van Siclen C Dew, Watts KD, Bradbury JN, Gram PAM, Leon M, Maltrud HR, Paciotti MA, Jones SE (1987) Muon Catal Fusion 1:53Google Scholar
  9. 9.
    Bom VR, Bradbury JN, Davies JD, Demin AM, Demin DL, Drebushko AE, Dzhelepov VP, Eijk CWE, Filchenkov VV, Golubkov AN, Grishechkin VG, Klevtsov VG, Konin AD, Medved SV, Nazarov VA, Perevozchikov VV, Pryanichnikov VI, Rozhov V Ya, Rudenko AI, Sadetsky SM, Semenchuk GG, Sidorov VT, Smirenin Yu V, Sukhoi II, Voropaev NI, Yukhimchuk AA, Zinov VG, Zlatoustovskii SV (1999) Hyperfine Interact 118:103CrossRefGoogle Scholar
  10. 10.
    Perevozchikov VV, Yukhimchuk AA, Demin DL, Ganchuk NS, Grebinnik VG, Grishechkin SK, Ishkov PD, Khabarov YuA, Lobanov VN, Malkov IL, Tikhonov VI, Zinov VG (1999) Hyperfine Interact 119:353CrossRefGoogle Scholar
  11. 11.
    Souers PC (1986) Hydrogen properties for fusion energy. University of California Press, Berkeley and Los AngelesGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  1. 1.RIKEN Nishina Center for Accelerator-Based ScienceWakoJapan

Personalised recommendations