Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 306, Issue 1, pp 139–146 | Cite as

Preparation and characterization of surface imprinted polymer for selective sorption of uranium(VI)

  • Hu Meng
  • Zheng LiEmail author
  • Fuyin Ma
  • Lina Jia
  • Xiaoning Wang
  • Wei Zhou
  • Lan Zhang
Article

Abstract

A new surface ion-imprinted polymer for the selective sorption of U(VI) from aqueous solution was prepared by copolymerization of a binary complex of U(VI) with methacrylic acid. The adsorption behavior of U(VI) onto the imprinted polymer was investigated by batch experiments and the results demonstrated that the maximum adsorption capacity of U(VI)-imprinted and non-imprinted polymers was found to be 35.92 and 22.58 mg g−1, respectively. The selectivity study revealed that the U(VI)-imprinted polymer exhibited excellent selectivity and affinity toward U(VI) in the presence of competitive metal ions.

Keywords

Surface imprinting Uranium(VI) Selective sorption Silica gel 

Notes

Acknowledgments

This study was supported by the Strategic Priority Research Program of the Chinese Academy of Science (Grant No. XDA02030000) and National Natural Science Foundation of China (No. 11305244).

References

  1. 1.
    Seyed JA, Omid NK, Simindokht SA (2010) Synthesis and characterization of new ion-imprinted polymer for separation and preconcentration of uranyl (UO2 2+) ions. J Hazard Mater 175:193–197CrossRefGoogle Scholar
  2. 2.
    Liu MC, Chen CL, Wen T, Wang XK (2014) Synthesis of magnetic ion-imprinted composites and selective separation and preconcentration of U(VI). Dalton Trans 43:7050–7056CrossRefGoogle Scholar
  3. 3.
    Sadeghi S, Aboobakri E (2012) Magnetic nanoparticles with an imprinted polymer coating for the selective extraction of uranyl ions. Microchim Acta 178:89–97CrossRefGoogle Scholar
  4. 4.
    Gao DM, Zhang ZP, Wu MH, Xie CG, Guan GJ, Wang DP (2007) A surface functional monomer-directing strategy for highly dense imprinting of TNT at surface of silica nanoparticles. J Am Chem Soc 129:7859–7866CrossRefGoogle Scholar
  5. 5.
    Mojtaba S, Javad F, Khadijeh A (2007) Grafting of ion-imprinted polymers on the surface of silica gel particles through covalently surface-bound initiators: a selective sorbent for uranyl ion. Anal Chem 79:7116–7123CrossRefGoogle Scholar
  6. 6.
    Milja TE, Prathish KP, Rao TP (2010) Synthesis of surface imprinted nanospheres for selective removal of uranium from simulants of Sambhar salt lake and ground water. J Hazard Mater 188:384–390CrossRefGoogle Scholar
  7. 7.
    Bae SY, Southard GL, Murray GM (1999) Molecularly imprinted ion exchange resin for purification, preconcentration and determination of UO2 2+ by spectrophotometry and plasma spectrometry. Anal Chim Acta 397:173–181CrossRefGoogle Scholar
  8. 8.
    Kimaro A, Kelly LA, Murray GM (2001) Molecularly imprinted ionically permeable membrane for uranyl ion. Chem Commun 14:1282–1283CrossRefGoogle Scholar
  9. 9.
    Kimaro A, Kelly LA, Murray GM (2005) Synthesis and characterization of molecularly imprinted uranyl ion exchange resins. Sep Sci Technol 40:2035–2052CrossRefGoogle Scholar
  10. 10.
    Saunders GD, Foxon SP, Walton PH, Joyceb MJ, Port SN (2000) A selective uranium extraction agent prepared by polymer imprinting. Chem Commun 4:273–274CrossRefGoogle Scholar
  11. 11.
    Port SN, Joyceb MJ, Walton PH, Saunders GD (1999) Detection and extraction of an ion in a solution, particularly uranium ion. EP 1019:555Google Scholar
  12. 12.
    Say R, Ersöz A, Denizli A (2003) Selective separation of uranium containing glutamic acid molecular-imprinted polymeric microbeads. Sep Sci Technol 38:3431–3447CrossRefGoogle Scholar
  13. 13.
    Pakade VE, Cukrowska EM, Darkwa J, Darko G, Torto N, Chimuka L (2012) Simple and efficient ion imprinted polymer for recovery of uranium from environmental samples. Water Sci Technol 65:728–736CrossRefGoogle Scholar
  14. 14.
    Metilda P, Gladis JM, Venkateswaran G, Rao TP (2007) Investigation of the role of chelating ligand in the synthesis of ion-imprinted polymeric resins on the selective enrichment of uranium(VI). Anal Chim Acta 587:263–271CrossRefGoogle Scholar
  15. 15.
    Ji XZ, Liu HJ, Wang LL, Sun YK, Wu YW (2013) Synthesis of a new ionic imprinted polymer for the extraction of uranium from seawater. J Radioanal Nucl Chem 298:1705–1712CrossRefGoogle Scholar
  16. 16.
    He Q, Chang XJ, Wu Q, Huang XP, Hu Z, Zhai YH (2007) Synthesis and applications of surface-grafted Th(IV)-imprinted polymers for selective solid-phase extraction of thorium(IV). Anal Chim Acta 605:192–197CrossRefGoogle Scholar
  17. 17.
    He FF, Wang HQ, Wang YY, Wang XF, Zhang HS, Li HL, Tang JH (2013) Magnetic Th(IV)-ion imprinted polymers with salophen schiff base for separation and recognition of Th(IV). J Radioanal Nucl Chem 295:167–177CrossRefGoogle Scholar
  18. 18.
    Yusan S, Yenil N, Kuzu S, Aslani MAA (2011) Properties of uranium(VI) adsorption by methyl 3-O-acetyl-5,6-dideoxy-(S)-1,2-trichloroethylidene-α-d-xylo-hept-5(E)-eno-1,4-furano-urinate. J Chem Eng Data 56:2013–2019CrossRefGoogle Scholar
  19. 19.
    Gladis JM, Rao TP (2004) Effect of porogen type on the synthesis of uranium ion imprinted polymer materials for the preconcentration/separation of traces of uranium. Microchim Acta 146:251–258CrossRefGoogle Scholar
  20. 20.
    Singh DK, Mishra S (2009) Synthesis and characterization of UO2 2+-ion imprinted polymer for selective extraction of UO2 2+. Anal Chim Acta 644:42–47CrossRefGoogle Scholar
  21. 21.
    Fasihi J, Alahyari SA, Shamsipur M, Sharghi H, Charkhi A (2011) Adsorption of uranyl ion onto an anthraquinone based ion-imprinted copolymer. React Funct Polym 71:803–808CrossRefGoogle Scholar
  22. 22.
    Moniera M, Elsayed NH (2014) Selective extraction of uranyl ions using ion-imprinted chelating microspheres. J Colloid Interface Sci 423:113–122CrossRefGoogle Scholar
  23. 23.
    Chen SW, Guo BL, Wang YL, Li Y, Song LJ (2014) Removal of uranium(VI) and thorium(IV) ions from aqueous solutions by functionalized silica: kinetic and thermodynamic studies. J Radioanal Nucl Chem 299:1183–1190CrossRefGoogle Scholar
  24. 24.
    Elwakeel KZ, Atia AA (2014) Uptake of U(VI) from aqueous media by magnetic Schiff’s base chitosan composite. J Clean Prod 70:292–302CrossRefGoogle Scholar
  25. 25.
    Semnani F, Asadi Z, Samadfam M, Sepehrian H (2012) Uranium(VI) sorption behavior onto amberlite CG-400 anion exchange resin: effects of pH, contact time, temperature and presence of phosphate. Ann Nucl Energy 48:21–24CrossRefGoogle Scholar
  26. 26.
    Song Q, Ma LJ, Liu J, Bai CY, Geng JX, Wang H, Li B, Wang LY, Li SJ (2012) Preparation and adsorption performance of 5-azacytosine-functionalized hydrothermal carbon for selective solid-phase extraction of uranium. J Colloid Interface Sci 386:291–299CrossRefGoogle Scholar
  27. 27.
    Ajmal M, Rao RAK, Ahmad R, Ahmad J (2000) Adsorption studies on Citrus reticulata (fruit peel of orange): removal and recovery of Ni(II) from electroplating wastewater. J Hazard Mater 79:117–131CrossRefGoogle Scholar
  28. 28.
    Sekara M, Sakthi V, Rengaraj S (2004) Kinetics and equilibrium adsorption study of lead(II) onto activated carbon prepared from coconut shell. J Colloid Interface Sci 279:307–313CrossRefGoogle Scholar
  29. 29.
    Lin CR, Wang HQ, Wang YY, Cheng ZQ (2010) Selective solid-phase extraction of trace thorium(IV) using surface-grafted Th(IV)-imprinted polymers with pyrazole derivative. Talanta 81:30–36CrossRefGoogle Scholar
  30. 30.
    Lin CR, Wang HQ, Wang YY, Zhou L, Liang J (2011) Selective preconcentration of trace thorium from aqueous solutions with Th(IV)-imprinted polymers prepared by a surface-grafted technique. Int J Environ Anal Chem 91:1050–1061CrossRefGoogle Scholar
  31. 31.
    Chen SW, Guo BL, Wang YL, Li Y, Song LJ (2013) Study on sorption of U(VI) onto ordered mesoporous silicas. J Radioanal Nucl Chem 295:1435–1442CrossRefGoogle Scholar
  32. 32.
    Wu Y, Kim SY, Tozawa D, Ito T, Tada T, Hitomi K, Kuraoka E, Yamazaki H, Ishii K (2012) Study on selective separation of cesium from high level liquid waste using a macroporous silica-based supramolecular recognition absorbent. J Radioanal Nucl Chem 293:13–20CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • Hu Meng
    • 1
    • 2
    • 3
    • 4
  • Zheng Li
    • 1
    • 3
    • 4
    Email author
  • Fuyin Ma
    • 1
    • 2
    • 3
    • 4
  • Lina Jia
    • 1
    • 3
    • 4
  • Xiaoning Wang
    • 1
    • 2
    • 3
    • 4
  • Wei Zhou
    • 1
    • 3
    • 4
  • Lan Zhang
    • 1
    • 3
    • 4
  1. 1.Shanghai Institute of Applied Physics, Chinese Academy of ScienceShanghaiPeople’s Republic of China
  2. 2.University of Chinese Academy of SciencesBeijingPeople’s Republic of China
  3. 3.Key Laboratory of Nuclear Radiation and Nuclear Energy TechnologyChinese Academy of ScienceShanghaiPeople’s Republic of China
  4. 4.Center for Excellence TMSR Energy SystemChinese Academy of ScienceShanghaiPeople’s Republic of China

Personalised recommendations