Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 305, Issue 3, pp 875–882 | Cite as

Intense heavy ion beam-induced temperature effects in carbon-based stripper foils

  • K. KupkaEmail author
  • M. Tomut
  • P. Simon
  • C. Hubert
  • A. Romanenko
  • B. Lommel
  • C. Trautmann
Article

Abstract

At the future FAIR facility, reliably working solid carbon stripper foils are desired for providing intermediate charge states to SIS18. With the expected high beam intensities, the foils experience enhanced degradation and limited lifetime due to severe radiation damage, stress waves, and thermal effects. This work presents systematic measurements of the temperature of different carbon-based stripper foils (amorphous, diamond-like, and carbon-nanotube based) exposed to 4.8 MeV/u U, Bi, and Au beams of different pulse intensities. Thermal and spectroscopic analyses were performed by means of infrared thermography and Fourier transform infrared spectroscopy. The resulting temperature depends on the foil thickness and strongly increases with increasing pulse intensity and repetition rate.

Keywords

Carbon stripper foils High-power accelerators Heavy ion beam High-current operation Temperature measurement Infrared thermography 

Notes

Acknowledgments

The authors would like to thank Dr. R. Danjoux (FLIR Systems Inc.) for valuable discussions. Katharina Kupka gratefully acknowledges support by BMBF (contract No. 05P12RDRBL) and HGS-HIRe Graduate School.

References

  1. 1.
    Barth W, Clemente G, Dahl L, Gerhard P, Groening L, Lommel B, Kaiser M S, Maier M, Mickat S, Vinzenz W (2010) High current design U40+-operation in the GSI-UNILAC. In: Proceedings of the 25th linear accelerator conference, MOP044, 154–156Google Scholar
  2. 2.
    Barth W, Kaiser MS, Lommel B, Maier M, Mickat S, Schlitt B, Steiner J, Tomut M, Vormann H (2014) J Radioanal Nucl Chem 299:1047–1053. doi: 10.1007/s10967-013-2651-3 Google Scholar
  3. 3.
    Schlitt B, Vormann H, Barth W, Clemente G, Groening L, Kaiser M S, Lommel B, Maier M, Mickat S, Steiner J (2013) Charge stripping tests of high current uranium ion beams with methane and hydrogen gas strippers and carbon foils at the GSI UNILAC. In: Proceedings of the 4th international particle accelerator conference, THPWO010, 3379–3781Google Scholar
  4. 4.
    Tahir NA, Kim V, Schlitt B, Barth W, Groening L, Lomonosov IV, Piriz AR, Stöhlker T, Vormann H (2014) Phys Rev Special Topics-Accel Beams 17:041003. doi: 10.1103/PhysRevSTAB.17.041003 CrossRefGoogle Scholar
  5. 5.
    Okuno H, Fukunishi N, Hasebe H, Imao H, Kamigaito O, Kase M, Kuboki H (2014) J Radioanal Nuclear Chem 299:945–949. doi: 10.1007/s10967-013-2715-4 CrossRefGoogle Scholar
  6. 6.
    Hasebe H, Kuboki H, Okuno H, Yamane I, Imao H, Fukunishi N, Kase M, Kamigaito O (2014) J Radioanal Nuclear Chem 299:1013–1018. doi: 10.1007/s10967-013-2635-3 CrossRefGoogle Scholar
  7. 7.
    Hasebe H, Okuno H, Kuboki H, Ryuto H, Fukunishi N, Kamigaito O, Goto A, Kase M, Yano Y (2010) Nucl Instrum Methods A 613:453–456. doi: 10.1016/j.nima.2009.10.002 CrossRefGoogle Scholar
  8. 8.
    Kuboki H, Okuno H, Hasebe H, Yokouchi S, Fukunishi N, Higurashi Y, Ohnishi J, Nakagawa T, Imao H, Kamigaito O (2011) Phys Rev Special Topics-Accel Beams 14:053502. doi: 10.1103/PhysRevSTAB.14.053502 CrossRefGoogle Scholar
  9. 9.
    Marti F (2012) Heavy ion strippers. In: Proceedings of the 26th linear accelerator conference, FR1A01, 1050–1054Google Scholar
  10. 10.
    Marti F, Hershcovitch A, Momozaki Y, Nolen J, Reed C, Thieberger P (2010) Development of stripper options for FRIB. In: Proceedings of the 25th linear accelerator conference, TUP106, 662–664Google Scholar
  11. 11.
    Marti F, Hitchcock S, Miller P, Stetson JW, Yurkon J (2010) Stripper foil developments at NSCL/MSU, Proceedings of the 19th international conference on cyclotrons and their applications, THM2CCO03: 373–375Google Scholar
  12. 12.
    Lommel B, Hartmann W, Kindler B, Klemm J, Steiner J (2002) Nuclear Instrum Methods Phys Res Sect A 480:199–203. doi: 10.1016/S0168-9002(01)02100-3 CrossRefGoogle Scholar
  13. 13.
    Ziegler JF, Biersack JP, Littmark U (1985) The stopping and range of ions in solids, vol 1. Pergamon Press, New YorkGoogle Scholar
  14. 14.
    Nagatsu M, Takada N, Tsukishima T, Shimada M (1994) J Nucl. Mater 209:204–211. doi: 10.1016/0022-3115(94)90296-8 CrossRefGoogle Scholar
  15. 15.
    Danjoux R (2015) Window or External Optics Transmittance. Technical Publication 60. A817 T560472itc INFRARED TRAINING CENTER. http://support.flir.com/Answers/A817T/A817-T560472_A-en-US%20Technical%20publication%2060%20Window%20or%20External%20Optics%20Transmittance.pdf Accessed 03 Jan 2015
  16. 16.
    Wien W (1896) Annalen der Physik 294:662–669. doi: 10.1002/andp.18962940803 CrossRefGoogle Scholar
  17. 17.
    Baake O, Seidl T, Hossain UH, Delgado AO, Bender M, Severin D, Ensinger W (2011) Rev Sci Instrum 82:045103. doi: 10.1063/1.3571301 CrossRefGoogle Scholar
  18. 18.
    Beer A (1852) Annalen der Physik 165:78–88. doi: 10.1002/andp.18521620505 CrossRefGoogle Scholar
  19. 19.
    Lambert JH, Anding E (1892) Lamberts Photometrie: [Photometria, sive De mensura et gradibus luminis, colorum et umbrae]. W. Engelmann, LeipzigGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • K. Kupka
    • 1
    • 2
    Email author
  • M. Tomut
    • 2
    • 3
  • P. Simon
    • 1
  • C. Hubert
    • 1
    • 2
  • A. Romanenko
    • 1
    • 2
  • B. Lommel
    • 2
  • C. Trautmann
    • 2
    • 1
  1. 1.Technische Universität DarmstadtDarmstadtGermany
  2. 2.GSI Helmholtz Center for Heavy Ion ResearchDarmstadtGermany
  3. 3.NIMP National Institute of Materials PhysicsBucharestRomania

Personalised recommendations