Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 305, Issue 2, pp 529–534 | Cite as

Gamma radiation shielding efficiency of a new lead-free composite material

  • H. M. Soylu
  • F. Yurt Lambrecht
  • O. A. Ersöz
Article

Abstract

The aim of the study is to produce a new metal-polymer composite in the form of disc and investigate shielding efficiencies against gamma radiation (137Cs and 131I and 241Am). The composite discs were produced from mixing polymer and different percentage tungsten carbide (50, 60, and 70 %). Compared with lead in same conditions the new material is more lightweight and flexible. Moreover the material’s shielding efficiency is higher than lead also.

Keywords

Gamma radiation Shielding Tungsten carbide Polymer Lead-free 

Notes

Acknowledgments

This research was supported by the Ege University, Scientific Research Project (BAP), and Project No. 13FBE009.

References

  1. 1.
    Jaeger T (1965) Principles of radiation protection engineering. McGraw-Hill, New YorkGoogle Scholar
  2. 2.
    Lansdown R, Yule W (1986) Lead toxicity: History and environmental impact. Johns Hopkins University Press, BaltimoreGoogle Scholar
  3. 3.
    Yue K, Luo W, Dong X, Wang C, Wu G, Jiang M, Zha Y (2009) Radiat Prot Dosim 4:256–260CrossRefGoogle Scholar
  4. 4.
    Larry Stover, Director of Technology, Jeff Frankish, Product Group Manager, M.A. Hanna Engineered Materials; Robert Durkee, President, David Douglas, Vice President, Ideas to Market, L.PGoogle Scholar
  5. 5.
    Nambiar S, Yeow JTW (2012) ACS Appl Mater Interfaces 4:5717–5726CrossRefGoogle Scholar
  6. 6.
    Kucuk N, Cakir M, Isitman NA (2012) Radiation Protection Dosimeter, ncs091Google Scholar
  7. 7.
    Hussain R, Haq Z, Mohammad D (1997) J Islamic Acad Sci 10(3):81–84Google Scholar
  8. 8.
    Eder H (2006) US Patent Application Publication No. US 2006/0151750 A1Google Scholar
  9. 9.
    McAlister DR (2012) Gamma ray attenuation properties of common shielding materials, University Lane Lisle, USAGoogle Scholar
  10. 10.
    Hubbell JH (1982) Int J Appl Radiat Isot 33(11):1269–1290CrossRefGoogle Scholar
  11. 11.
    Guetersloh S, Zeitlin C, Heilbronn L, Miller J, Komiyama T, Fukumura A, Bhattacharya M (2006) Nucl Instrum Method Phys Res Sect B 252(2):319–332CrossRefGoogle Scholar
  12. 12.
    Kim SC, Dong KR, Chung WK (2012) Ann Nucl Energy 47:1–5CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • H. M. Soylu
    • 1
  • F. Yurt Lambrecht
    • 2
  • O. A. Ersöz
    • 2
  1. 1.Department of Biomedical Technology, Institute of ScienceEge UniversityIzmirTurkey
  2. 2.Department of Nuclear Applications, Institute of Nuclear ScienceEge UniversityIzmirTurkey

Personalised recommendations