Accelerator-based photoproduction of promising beta-emitters 67Cu and 47Sc

  • Valeriia N. Starovoitova
  • Philip L. Cole
  • Terry L. Grimm


In this paper we discuss our experimental work in photoproducing two medically-useful radioisotopes (68Zn(γ,p) 67Cu and 48Ca(γ,n)47Ca → 47Sc) using an electron linear accelerator. We further address the issues of production and separation of medical isotopes arising from photoneutron (γ,n) and photoproton (γ,p) reactions. While (γ,n) reactions typically result in greater yields, separating product nuclides from the target is challenging since the chemical properties of both nuclides are identical. Although the yields of (γ,p) reactions are typically lower than for (γ,n), these proton-rich isotopes have the advantage that target and product nuclides belong to different chemical species allowing for more straightforward chemical separation. We conclude the paper by touching upon the dire necessity of experimentally revisiting a broad swath of photonuclear reactions in the 10- to 50-MeV regime. The very paucity of empirical cross-sectional data makes it altogether impossible to realistically predict accelerator-based photoproduction of many promising radiopharmaceuticals.


Radioisotopes Photonuclear production Electron linac 



We thank KC Bindu and Shraddha Rane for their work on performing the gamma spectroscopy analysis on the Zn and CaCl2 samples. We further are very grateful to the Idaho Accelerator Center staff for delivering beam for these experiments. This work was funded, in part, through the IGEM (Idaho Global Entrepreneurial Mission) program and through the Department of Energy Grant DE-SC0002417.


  1. 1.
    US Radiopharmaceutical Agents Markets (2008). Frost and Sullivan Research Service I-5Google Scholar
  2. 2.
    Maslov OD, Sabelnikov AV, Dmitriev SN (2006) Preparation of 99Mo and 99mTc by 100Mo(γ, n) photonuclear reaction on an electron accelerator, MT-25 microtron. Radiochemistry 48:195–197CrossRefGoogle Scholar
  3. 3.
    Starovoitova VN, Tchelidze L, Wells DP (2014) Production of medical radioisotopes with linear accelerators. Appl Radiat Isot 85:39–44CrossRefGoogle Scholar
  4. 4.
    Schwarzbach R, Zimmerman K, Blauenstein P, Smith A, Schubiger PA (1995) Development of a simple and selective separation of Cu-67 from irradiated zinc for use in antibody labeling—a comparison of methods. Appl Radiat Isot 46(5):329–336CrossRefGoogle Scholar
  5. 5.
    Le Fevre B, Pin C (2005) A straightforward separation scheme for concomitant Lu–Hf and Sm–Nd isotope ratio and isotope dilution analysis. Anal Chim Acta 54:209–221CrossRefGoogle Scholar
  6. 6.
    Kandil SA, Scholten B, Saleh ZA, Youssef AM, Qaim SM, Coenen HH (2007) A comparative study on the separation of radiozirconium via ion-exchange and solvent extraction techniques, with particular reference to the production of 88Zr and 89Zr in proton induced reactions on yttrium. J Radioanal Nucl Ch 274(1):45–52CrossRefGoogle Scholar
  7. 7.
    Handbook on Photonuclear Data for Applications Cross-sections and Spectra (2000) IAEA-TECDOC-1178, October 2000 (IAEA, Vienna, Austria)Google Scholar
  8. 8.
    Ayzatskiy NI, Dikiy NP, Dovbnya AN, Lyashko YuV, Nikiforov VI, Tenishev AEh, Torgovkin AV, Uvarov VL, Shramenko BI, Ehst D (2008) Features of 67Cu photonuclear production. Probl At Sci Tech 3(49):174–178Google Scholar
  9. 9.
    Kolsky KL, Joshi V, Mausner LF, Srivastava SC (1998) Radiochemical purification of no-carrier-added scandium-47 for radioimmunotherapy. Appl Radiat Isot 49:1541–1549CrossRefGoogle Scholar
  10. 10.
    Mausner LF, Kolsky KL, Mease RC, Chinol M, Meinken GE, Straub R, Pietrelli L, Steplewski Z, Srivastava SC (1993) Production and evaluation of Sc-47 for radioimmunotherapy. J Labelled Compd Radiopharm 32:388–390Google Scholar
  11. 11.
    DeLorme K, Engle J, Kowash B, Nortier F, Birnbaum E, McHale S, Clinton J, John K, Jackman K, Marus L (2014) Production potential of Sc-47 using spallation neutrons at the Los Alamos Isotope Production Facility. J Nucl Med 55(1):1468Google Scholar
  12. 12.
    Mausner LF, Kolsky KL, Joshi V, Srivastava SC (1998) Radionuclide development at BNL for nuclear medicine therapy. Appl Radiat Isot 49:285–294CrossRefGoogle Scholar
  13. 13.
    Srivastava SC, Dadachova E (2001) Recent advances in radionuclide therapy. Semin Nucl Med 31:330–341CrossRefGoogle Scholar
  14. 14.
    Mamtimin M, Harmon F, Starovoitova VN (2015) Sc-47 production from titanium targets using electron linacs. Appl Radiat Isot (Submitted)Google Scholar
  15. 15.
    Dikiy NP, Dovbnya AN, Nikiforov VI, Uvarov VL (2006) Estimation of medical radionuclide yields in photonuclear production. Probl At Sci Tech 2(46):181–183Google Scholar
  16. 16.
    Rane S, Harris JT, Starovoitova VN (2015) 47Ca production for 47Ca/47Sc generator system using electron linacs. Appl Radiat Isot 97:188–192CrossRefGoogle Scholar
  17. 17.
    Shibata K, Iwamoto O, Nakagawa T, Iwamoto N, Ichihara A, Kunieda K, Chiba S, Furutaka K, Otuka N, Ohsawa T, Murata T, Matsunobu H, Zukeran A, Kamada S, Katakura J (2011) JENDL-4.0: a new library for nuclear science and engineering. J Nucl Sci Technol 48(1):1–30CrossRefGoogle Scholar
  18. 18.
    Chadwick M, Oblozinsky P, Herman M, Greene N, McKnight R, Smith D, Young P, MacFarlane R, Hale G, Frankle S, Kahler A, Kawano T, Little R, Madland D, Moller P, Mosteller R, Page P, Talou P, Trellue H, White M, Wilson W, Arcilla R, Dunford C, Mughabghab C, Pritychenko B, Rochman D, Sonzogni A, Lubitz C, Trumbull T, Weinman J, Brown D, Cullen D, Heinrichs D, McNabb D, Derrien H, Dunn M, Larson N, Leal L, Carlson A, Block R, Briggs J, Cheng E, Huria H, Zerkle M, Kozier K, Courcelle A, Pronyaev V, Van der Marck S (2006) ENDF/B-VII.0: next generation evaluated nuclear data library for nuclear science and technology. Nucl Data Sheets 107(12):2931–3060CrossRefGoogle Scholar
  19. 19.
    Koning AJ, Rochman D (2012) Modern nuclear data evaluation with the TALYS code system. Nucl Data Sheets 113:2841–2934CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • Valeriia N. Starovoitova
    • 1
  • Philip L. Cole
    • 2
  • Terry L. Grimm
    • 1
  1. 1.Niowave Inc.LansingUSA
  2. 2.Department of PhysicsIdaho State UniversityPocatelloUSA

Personalised recommendations