Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 304, Issue 3, pp 1321–1327 | Cite as

Dependence of radon emanation of soil on lithology

  • Richárd Kardos
  • Asta Gregorič
  • Jácint Jónás
  • Janja Vaupotič
  • Tibor Kovács
  • Yuu Ishimori
Article

Abstract

In soil samples collected from 58 points of 7 different lithological units that appear most often in Slovenia, emanation fraction of 222Rn and porosity have been determined. Emanation fraction ranged from 0.010 to 0.547 and varied substantially among lithological units, as well as within the same lithological unit. The highest average value was found in soil over sea and lake deposits (0.340) and the lowest, over metamorphic rocks (0.029). Based on the data measured, radon concentration in soil gas was calculated and compared with the values obtained previously at the same points by exposing solid state nuclear track detectors.

Keywords

Radon Radium Soil samples Emanation fraction Lithology Slovenia 

Notes

Acknowledgments

The study was financed by the Slovenian Research Agency under the programme contract no. P1-0143, the Slovenia-Hungary cooperation in science and technology under the contract no. BI-HU/08-016, the Slovenian Nuclear Safety Administration under the project no. 2513-06-397005, and the Hungarian State and the European Union projects Grant No. TÁMOP-4.2.2.A-11/1/KONV-2012-0071. The authors thank undergraduate students of the Department of Geology at the Faculty of Natural Science and Engineering, University of Ljubljana for their excellently executed field work, and land owners who kindly permitted us to carry out sampling on their land.

References

  1. 1.
    Jr Nero AV (1988) Radon and its decay products in indoor air: an overview. In: Nazaroff WW, Jr Nero AV (eds) Radon and its decay products in indoor air. Wiley, New YorkGoogle Scholar
  2. 2.
    Etiope G, Martinelli G (2002) Migration of carrier and trace gases in the geosphere: an overview. Phys Earth Planet Inter 129:185–204CrossRefGoogle Scholar
  3. 3.
    Neznal M, Neznal M, Šmarda J (1996) Assessment of radon potential of soils—A five-year experience. Environ Int 22(Supplement 1):819–828CrossRefGoogle Scholar
  4. 4.
    Kemski J, Siehl A, Stegemann R, Valdivia-Manchego M (2001) Mapping the geogenic radon potential in Germany. Sci Tot Environ 272:217–230CrossRefGoogle Scholar
  5. 5.
    Friedmann H, Gröller J (2010) An approach to improve the Austrian Radon Potential Map by Bayesian statistics. J Environ Radioact 101:804–808CrossRefGoogle Scholar
  6. 6.
    Washington JW, Rose AW (1992) Temporal variability of radon concentration in the interstitial gas of soils in Pennsylvania. J Geophys Res Solid Earth 97:9145–9159CrossRefGoogle Scholar
  7. 7.
    Wang F, Ward IC (2000) The development of a radon entry model for a house with a cellar. Build Environ 35:615–631CrossRefGoogle Scholar
  8. 8.
    Abumurad KM, Al-Tamimi M (2001) Emanation power of radon and its concentration in soil and rocks. Radiat Meas 34:423–426CrossRefGoogle Scholar
  9. 9.
    Andersen CE (2001) Numerical modelling of radon-222 entry into houses: an outline of techniques and results. Sci Tot Environ 272:33–42CrossRefGoogle Scholar
  10. 10.
    Bossew P (2003) The radon emanation power of building materials, soils and rocks. Appl Radiat Isot 59:389–392CrossRefGoogle Scholar
  11. 11.
    Font L, Baixeras C, Domingo C (2001) Uncertainty, variability and sensitivity analysis applied to the RAGENA model of radon generation, entry and accumulation indoors. Sci Tot Environ 272:25–31CrossRefGoogle Scholar
  12. 12.
    Iskandar D, Iida T, Yamazawa H, Moriizumi J, Koarashi J, Yamasoto K, Yamasaki K, Shimo M, Tsujimoto T, Ishikawa S, Fukuda M, Kojima H (2005) The transport mechanisms of 222Rn in soil at Tateishi as an anomaly spot in Japan. Appl Radiat Isot 63:401–408CrossRefGoogle Scholar
  13. 13.
    Griffiths AD, Zahorowski W, Element A, Werczynski S (2010) A map of radon flux at the Australian land surface. Atmos Chem Phys 10:8969–8982CrossRefGoogle Scholar
  14. 14.
    Savović S, Djordjevich A, Ristić G (2012) Numerical solution of the transport equation describing the radon transport from subsurface soil to buildings. Radiat Prot Dosim 150:213–216CrossRefGoogle Scholar
  15. 15.
    Nazaroff WW, Moed BA, Sextro RG (1988) Soil as a source of indoor radon: generation, migration, and entry. In: Nazaroff WW, Nero JAV (eds) Radon and its decay products in indoor air. Wiley, New YorkGoogle Scholar
  16. 16.
    Nazaroff WW (1992) Radon transport from soil to air. Rev Geophys 30:137–160CrossRefGoogle Scholar
  17. 17.
    Sakoda A, Ishimori Y, Yamaoka K (2011) A comprehensive review of radon emanation measurements for mineral, rock, soil, mill tailing and fly ash. Appl Radiat Isot 69:1422–1435CrossRefGoogle Scholar
  18. 18.
    UNSCEAR (2000) Sources and effects of ionizing radiation. UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation) 2000 Report to the General Assembly, with Scientific AnnexesGoogle Scholar
  19. 19.
    Greeman DJ, Rose AW (1996) Factors controlling the emanation of radon and thoron in soils of the eastern U.S.A. Chem Geol 129:1–14CrossRefGoogle Scholar
  20. 20.
    Barillon R, Özgümüs A, Chambaudet A (2005) Direct recoil radon emanation from crystalline phases. Influence of moisture content. Geochim Cosmochim Acta 69:2735–2744CrossRefGoogle Scholar
  21. 21.
    Sakoda A, Ishimori Y, Hanamoto K, Kataoka T, Kawabe A, Yamaoka K (2010) Experimental and modeling studies of grain size and moisture content effects on radon emanation. Radiat Meas 45:204–210CrossRefGoogle Scholar
  22. 22.
    Markkanen M, Arvela H (1992) Radon emanation from soils. Radiat Prot Dosim 45:269–272Google Scholar
  23. 23.
    Jobbágy V, Somlai J, Kovács J, Szeiler G, Kovács T (2009) Dependence of radon emanation of red mud bauxite processing wastes on heat treatment. J Hazard Mater 172:1258–1263CrossRefGoogle Scholar
  24. 24.
    Sakoda A, Hanamoto K, Ishimori Y, Nagamatsu T, Yamaoka K (2008) Radioactivity and radon emanation fraction of the granites sampled at Misasa and Badgastein. Appl Radiat Isot 66:648–652CrossRefGoogle Scholar
  25. 25.
    Sakoda A, Nishiyama Y, Hanamoto K, Ishimori Y, Yamamoto Y, Kataoka T, Kawabe A, Yamaoka K (2010) Differences of natural radioactivity and radon emanation fraction among constituent minerals of rock or soil. Appl Radiat Isot 68:1180–1184CrossRefGoogle Scholar
  26. 26.
    de Martino S, Sabbarese C, Monetti G (1998) Radon emanation and exhalation rates from soils measured with an electrostatic collector. Appl Radiat Isot 49:407–413CrossRefGoogle Scholar
  27. 27.
    Sakoda A, Hanamoto K, Ishimori Y, Kataoka T, Kawabe A, Yamaoka K (2010) First model of the effect of grain size on radon emanation. Appl Radiat Isot 68:1169–1172CrossRefGoogle Scholar
  28. 28.
    Breitner D, Arvela H, Hellmuth KH, Renvall T (2010) Effect of moisture content on emanation at different grain size fractions—A pilot study on granitic esker sand sample. J Environ Radioactiv 101:1002–1006CrossRefGoogle Scholar
  29. 29.
    Efstathiou M, Sarrou I, Pashalidis I (2013) Emanation studies of radium containing materials by a simple radon monitoring system. J Radioanal Nucl Chem 298:673–677CrossRefGoogle Scholar
  30. 30.
    Sas Z, Somlai J, Jobbágy V, Kovács T, Szeiler G (2011) Radiological investigation of the effects of red mud disaster. In: Somlai J, Kovács T (eds) 6th Hungarian Radon Forum. VeszprémGoogle Scholar
  31. 31.
    Lee K, Yoon Y, Ko K (2010) Determination of the emanation coefficient and the Henry’s law constant for the groundwater radon. J Radioanal Nucl Chem 286:381–385CrossRefGoogle Scholar
  32. 32.
    Lee K, Cho S, Yoon Y, Jang Y (2012) Determination of the radon emanation fraction from phosphogypsum using LSC. J Radioanal Nucl Chem 291:197–200CrossRefGoogle Scholar
  33. 33.
    Schumann RR, Gundersen LCS (1996) Geologic and climatic controls on the radon emanation coefficient. Environ Int 22(Supplement 1):439–446CrossRefGoogle Scholar
  34. 34.
    Miklyaev PS, Petrova TB (2011) Studies of radon emanation from clays. Water Resour 38:868–875CrossRefGoogle Scholar
  35. 35.
    Humar M, Šutej T, Skvarc J, Mljač L, Radež M, Ilić R (1992) Indoor and outdoor radon survey in Slovenia by etched track detectors. Radiat Prot Dosim 45:549–552Google Scholar
  36. 36.
    Vaupotič J (2010) Slovenian approach in managing exposure to radon at workplaces. Nukleonika 55:565–571Google Scholar
  37. 37.
    Vaupotič J, Kobal I, Križman M (2010) Background outdoor radon levels in Slovenia. Nukleonika 55:579–582Google Scholar
  38. 38.
    Vaupotič J, Žvab P, Gregorič A, Kobal I, Kocman D, Kotnik J, Križman M (2008) Radon mapping in Slovenia based on its levels in soil gas. In: 33rd international geological congress, Oslo, NorwayGoogle Scholar
  39. 39.
    Brajnik D, Miklavžič U, Tomšič J (1992) Map of natural radioactivity in Slovenia and its correlation to the emanation of radon. Radiat Prot Dosim 45:273–276Google Scholar
  40. 40.
    Kovács T, Szeiler G, Fábián F, Kardos R, Gregorič A, Vaupotič J (2013) Systematic survey of natural radioactivity of soil in Slovenia. J Environ Radioactiv 122:70–78CrossRefGoogle Scholar
  41. 41.
    Somlai J, Jobbágy V, Somlai K, Kovács J, Németh C, Kovács T (2008) Connection between radon emanation and some structural properties of coal-slag as building material. Radiat Meas 43:72–76CrossRefGoogle Scholar
  42. 42.
    Abbady A, Abbady AGE, Michel R (2004) Indoor radon measurement with The Lucas cell technique. Appl Radiat Isot 61:1469–1475CrossRefGoogle Scholar
  43. 43.
    Misdaq MA, Bakhchi A, Ktata A, Lamine J (1999) The influence of the lithology and granulation on radon emanation in a sedimentary phosphatic deposit using solid state nuclear track detectors. J Radioanal Nucl Chem 242:41–48CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • Richárd Kardos
    • 1
  • Asta Gregorič
    • 2
  • Jácint Jónás
    • 1
  • Janja Vaupotič
    • 2
  • Tibor Kovács
    • 1
  • Yuu Ishimori
    • 3
  1. 1.Institute of Radiochemistry and RadioecologyUniversity of PannoniaVeszprémHungary
  2. 2.Jožef Stefan InstituteLjubljanaSlovenia
  3. 3.Ningyo-toge Environmental Engineering CenterJapan Atomic Energy AgencyOkayamaJapan

Personalised recommendations