Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 305, Issue 3, pp 913–919 | Cite as

Improving material properties and performance of nuclear targets for transmutation-relevant experiments

  • A. Vascon
  • N. Wiehl
  • J. Runke
  • J. Drebert
  • T. Reich
  • N. Trautmann
  • B. Cremer
  • T. Kögler
  • R. Beyer
  • A. R. Junghans
  • K. Eberhardt
  • Ch. E. Düllmann
Article
  • 164 Downloads

Abstract

To improve the properties and performance of thin layers produced by molecular plating as targets for nuclear experiments investigations with lanthanide elements (i.e., natural Nd and 147Sm-enriched Sm) were carried out. Plating parameters like roughness of the deposition substrate, plating solvent, electrolyte concentration, and applied current density were varied. The influence of each parameter on the properties of the layers was studied by characterizing the deposits. The characterizations showed that nuclear targets perform differently depending on their layer properties. The results obtained from the investigations were applied for the quantitative preparation of homogeneous large-area (i.e., 42 cm2) 242Pu targets to be used for transmutation-relevant experiments.

Keywords

Molecular plating Improved layer properties α-Particle spectroscopy 242Pu Transmutation 

Notes

Acknowledgments

The authors thank the staff of the TRIGA Mainz for performing the irradiations, Dr. T. Lauer for performing the coating of the Si wafers, and Prof. Dr. K. Lützenkirchen as well as Dr. T. Wiss for facilitating the analyses of the Pu targets at the Institute for Transuranium Elements of the Joint Research Centre of the European Commission. A. Vascon acknowledges financial support from the German Federal Ministry of Science and Education (BMBF) under contract numbers 02NUK13A and 02NUK13E.

References

  1. 1.
    TRAKULA website (www.hzdr.de/TRAKULA) Accessed 27 Jan 2015
  2. 2.
    Vascon A, Düllmann ChE, Eberhardt K, Kindler B, Lommel B, Runke J (2011) Nucl Instrum Methods A 655:72–79CrossRefGoogle Scholar
  3. 3.
    Parker W, Falk R (1962) Nucl Instrum Methods 16:355–357CrossRefGoogle Scholar
  4. 4.
    Greene JP, Heinz A, Falout J, Janssens RVF (2004) Nucl Instrum Methods A 521:214–221CrossRefGoogle Scholar
  5. 5.
    Ali MN, Garcia MA, Parsons-Moss T, Nitsche H (2010) Nat Protoc 5:1440–1446CrossRefGoogle Scholar
  6. 6.
    Vascon A, Santi S, Isse AA, Reich T, Drebert J, Christ H, Düllmann ChE, Eberhardt K (2012) Nucl Instrum Methods A 696:180–191CrossRefGoogle Scholar
  7. 7.
    Vascon A, Santi S, Isse AA, Reich T, Drebert J, Christ H, Eberhardt K, Düllmann ChE (2014) J Radioanal Nucl Chem 299:1085–1091CrossRefGoogle Scholar
  8. 8.
    Vascon A, Santi S, Isse AA, Kühnle A, Reich T, Drebert J, Eberhardt K, Düllmann ChE (2013) Nucl Instrum Methods A 714:163–175CrossRefGoogle Scholar
  9. 9.
    Vascon A, Wiehl N, Reich T, Drebert J, Eberhardt K, Düllmann ChE (2013) Nucl Instrum Methods A 721:35–44CrossRefGoogle Scholar
  10. 10.
    Vascon A, Runke J, Trautmann N, Cremer B, Eberhardt K, Düllmann ChE (2015) Appl Radiat Isot 95:36–43CrossRefGoogle Scholar
  11. 11.
    Izutsu K (2002) Electrochemistry in nonacqueous solutions. Darmstadt, GermanyCrossRefGoogle Scholar
  12. 12.
    Paunovic M, Schlesinger M (2006) Fundamentals of electrochemical deposition, 2nd edn. Wiley, New JerseyCrossRefGoogle Scholar
  13. 13.
    Trautmann N, Folger H (1989) Nucl Instrum Methods A 282:102–106CrossRefGoogle Scholar
  14. 14.
    Sibbens G, Moens A, Eykens R, Vanleeuw D, Kehoe F, Kühn H, Wynants R, Heyse J, Plompen A, Jakopič R, Richter S, Aregbe Y (2014) J Radioanal Nucl Chem 299:1093–1098CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • A. Vascon
    • 1
    • 2
    • 7
  • N. Wiehl
    • 1
    • 3
  • J. Runke
    • 4
  • J. Drebert
    • 1
  • T. Reich
    • 1
  • N. Trautmann
    • 1
  • B. Cremer
    • 5
  • T. Kögler
    • 2
    • 6
  • R. Beyer
    • 2
  • A. R. Junghans
    • 2
  • K. Eberhardt
    • 1
    • 3
  • Ch. E. Düllmann
    • 1
    • 3
    • 4
  1. 1.Institute of Nuclear ChemistryJohannes Gutenberg University MainzMainzGermany
  2. 2.Helmholtz-Zentrum Dresden-RossendorfDresdenGermany
  3. 3.SHE Chemistry Research SectionHelmholtz Institute MainzMainzGermany
  4. 4.SHE Chemistry DepartmentGSI Helmholtzzentrum für Schwerionenforschung GmbHDarmstadtGermany
  5. 5.European Commission, Joint Research CentreInstitute for Transuranium ElementsKarlsruheGermany
  6. 6.Technical University DresdenDresdenGermany
  7. 7.Advanced Science Research Center (ASRC)Japan Atomic Energy Agency (JAEA)TokaiJapan

Personalised recommendations